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On the basis of proposals by Cahn [Aeta Met. (1962). 10, 179-183] for cubic crystals, a coherent elastic 
model is developed which makes it possible for the orientations of exsolution boundaries formed either 
by spinodal decomposition or homogeneous nucleation to be predicted. The elastic energy for the 
coherent exsolution boundary is calculated for all orientations of the boundary, the minimum value 
for this energy corresponding to the predicted boundary. A program has been written which can be 
applied to all crystal systems; it uses as input the lattice parameters of crystals having the same com- 
positions as the exsolution domains and their corresponding elastic stiffnesses. The approximations 
of the model are discussed, especially the neglect of relaxation of the coherence stresses away from the 
boundary, and the uncertainties in the calculated results due to errors in or lack of knowledge of the 
input data. The coherent elastic model has been used to determine the orientations of exsolution 
boundaries in the feldspars. The agreement between calculated and observed exsolution boundaries 
is remarkable, considering that room-temperature lattice parameters and elastic stiffnesses are used. 
The angular differences are less than 3 ° in most cases. They may reach 20 ° in the labradorites because 
the input data are not well known. All observed exsolution boundaries have been accounted for and 
some unknown ones calculated. The results of the calculations may be used to explain the cause of the 
exsolution orientations and to suggest areas requiring further research. 

I. Introduction 

Crystals are frequently not homogeneous, and one of 
the common inhomogeneities is exsolution, especially 
in minerals and metals. The exsolution phenomenon 
may produce domains of different or practically iden- 
tical atomic structure. This paper deals with the latter 
case, in which a homogeneous crystal gives rise to two 
kinds of domain which differ only slightly in compo- 
sition and in lattice parameters. For exsolution to take 
place, it is necessary that certain atoms or groups of 
atoms can diffuse through the crystal without modifying 
the structure except for slight variations in the atomic 
coordinates due to differences in the sizes of the atoms. 

Two mechanisms are possible, homogeneous nuclea- 
tion and spinodal decomposition. Right from the start 
of homogeneous nucleation, the diffusion produces a 
sharp change in composition at the domain boundaries 
and the domains are of limited extent. At the begin- 
ning of spinodal decomposition, on the other hand, the 
domains differ infinitesimally in composition but 
extend throughout the crystal. 

In both cases, reaction proceeds in such a way as 
ultimately to achieve a minimum in free energy. The 
boundaries between domains will involve a certain 
amount of elastic energy; if this energy varies with the 
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orientation of the boundary, the total free energy will 
be minimized when the boundary energy is a minimum. 
Except in glasses, exsolution boundaries are nearly 
planar and have a definite orientation in almost all 
cases. The exsolution textures markedly affect the 
physical properties of the crystal and also contain 
valuable information about its past history. The object 
of this paper is to propose a method for calculating 
the boundary elastic energy between coherent or es- 
sentially coherent domains in order to determine the 
optimal orientation of the boundary. This method will 
be compared with the optimal-phase-boundary model 
of Bollmann (Bollmann, 1970; Bollmann & Nissen, 
1968) and applied to a problem of particular interest 
and complexity - the exsolution relations in the feld- 
spars, a mineral group of triclinic or monoclinic sym- 
metry. 

II. Coherent elastic boundary model 

1. Theory of  the calculation of  the boundary elastic 
energy 

During a study of the energy involved in spinodal 
decomposition of a solid, Cahn [for a review, see Cahn 
(1968)] defined the elastic energy of the boundaries 
between domains with a view to calculating the 
coherent spinodal curve with respect to the chemical 
spinodal curve. He formulated this boundary elastic 
energy in the case of an isotropic solid (Cahn, 1961) 
and in that of a cubic solid (Cahn, 1962). We have 
adopted the simple totally coherent hypotheses of 
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Cahn and have generalized them to the case of a 
crystal of any symmetry. 

The elastic boundary energy W E is given by W E= 
½S~ T, where the S~ are the elastic strain tensor com- 
ponents imposed on the lattice to permit coherence 
along the boundary and the T= are the corresponding 
stress tensor components. To evaluate the various 
components, it is necessary to define a total strain 
tensor S r and a compositional strain tensor S N due to 
the variation in composition AN, and to adopt several 
hypotheses. 

The quantity to be calculated is the boundary elastic 
energy for any orientation of the planar boundary 
between two exsolution domains. An orthogonal axial 
system OXI, OX2, OX3 is chosen such that OX3 is 
perpendicular to the boundary plane, 0](1 and 0](2 
being in this plane. 

To simplify the calculations, it is supposed that the 
exsolution domains are of equal volume. Thus if N(0) 
is the molar fraction of one of the components before 
exsolution, the corresponding values after exsolution 
in domains 1 and 2 are 

N(1)=N(O)+ AN and N(2)=N(O)-AN . 

(a) First postulate of the model 
The lattice is completely coherent along the bound- 

ary plane OX~Xz and there is no deformation of these 
parallel planes anywhere in the crystal during the 
exsolution (Cahn, 1962). S r is the total strain tensor 
between the lattice before and after exsolution, and 
its components parallel to the OXtX2 plane are zero. 
Hence: 

S[1 T r _  = S22 = S12 - O .  (1 a)  

It is convenient to express this alternatively in Voigt's 
notation in which it becomes 

r r S6r=0 (lb) $1 = S2 = 

A Homogeneous s r  C Coherent exso/ution 

A .. ~ SE(O IC 2C [ 

NIor N(o) + AN N(z)TN(o)-&N 

IB 2B 

B Incoherent exso/ut/an 

Fig. 1. Coherent exsolution (A ~ C) compared with incoherent 
exsolution (A -+ B). The total strain S r on passing from A 
to C can be decomposed into a compositional strain S N 
caused by a change in composition AN (A ~ B) and an 
elastic strain S e required to restore coherency (B ~ C). The 
lattice can have any given orientation compared to the 
coherent boundary 0)(13(2. 

Coherent exsolution according to this model is 
shown in Fig. 1 by the process A - +  C where A is 
homogeneous and of composition N(0) and C repre- 
sents the two domains of composition N(1) and N(2). 
S r is the total strain tensor on passing from lattice A 
to lattice 1 C. 

In order to carry out the calculations, it is supposed 
that the passage from A to C is broken up into two 
parts by way of B (Fig. 1), in which the two domains 
have the same compositions N(1) and N(2) as in C but 
are in simple contact along the plane OX~X2 without 
any coherence. The two domains 1B and 2B have 
normal unstressed lattice parameters, the situation 
corresponding on a macroscopic scale to incoherent 
two-phase exsolution, but without any interaction on 
the boundary. 

The compositional strain tensors S N(~) and S N~2~ 
describe the passage from lattice A to lattice 1B and to 
lattice 2B respectively. The passage from lattice 1B 
to lattice 2B is described by the tensor S tN"~ * N(2)~ 
which we will call the compositional-misfit tensor. 

It is obvious that 

S [ N ( 1 )  - ,  N(2)]  = _ S N ( 1 )  + S N ( 2 ) .  

Since the strains produced by small differences in com- 
position +AN and - A N  are equal and opposite, it 
follows that 

S N ( 1 )  = - -  S N ( 2 )  . 

Then we may write 

S N __- SNO) = _ SN(2) = _ ½SiN(l) -~ N(2)] 

The components of S tm~) -' N(z)~ can be calculated 
directly from the unstressed lattice parameters of 
homogeneous macroscopic crystals of compositions 
N(1) and N(2). 

The passage from B to C (Fig. 1) requires an elastic 
deformation to obtain coherence on the plane OX~X2. 
For this S E is the elastic strain tensor, S E") for domain 
1 and S E(z) for domain 2. For small strains 

S E ( 1 )  = - -  S E ( 2 )  = S E . 

The total strain tensor S T is the sum of the two parts 
due to the change in composition S N and to the elastic 
deformation SE; hence 

S T = S N -[- S E . (2) 

If T is the stress tensor related to the elastic stiain, 
the boundary elastic energy per unit volume is, in 
Voigt's notation 

WE=½S~T~ (c~= 1 to 6).  (3) 

(b) Second postulate of the model 
There are no stresses opposing a deformation per- 

pendicular to the boundary plane at any point in the 
crystal (Cahn, 1962). This implies that the components 
perpendicular to the boundary plane of the stress 
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tensor T which produces the elastic deformation of the 
crystal are zero: 

T33 = T32 = T3t  = 0 (4a) 

or, in Voigt's notation 

T3 = T4 = T5 = 0 .  (4b) 

The relation of the components of S E and T is given, 
in Voigt's notation, by 

T~=c~aS g (a, f l = l  to 6) (5) 

where c~ a are the elastic stiffness coefficients expressed 
in the same axial system OXtX2Xs as are the compo- 
nents of S ~ and T. This relation provides six equations 
which allow the calculation of the six unknown com- 
ponents in the tensors S ~ and T, since, of the other six 
components, Ta, T4 and T5 are zero from equation (4) 
(a consequence of postulate 2), and Sf, Sf and Sg are 
known from the following argument. Equation (1) 
gives 

r _  r =S6r = 0 $1 - S 2  

and if equation (2) is written in terms of its components, 

it follows that 

S f = - S f  S f = - S f a n d S 6 E = - S f .  

It is thus possible to calculate all the terms in equa- 
tion (3) and obtain the value of the coherent elastic 
energy for each successive orientation of the boundary 
plane OX1X2. 

The chief difficulty is that the necessary input infor- 
mation is expressed in axial systems which differ from 
one another and from that used in the above formal 
treatment, and must be transformed to be consistent 
with one another. The calculated orientation must also 
be transformed to an axial system in which it can be 
compared with experimental results. The method of 
doing so is described in the next section. 

- Axial system (5): the orthogonal system 0)'1, 0112, 
0I"3 normally used for stereographic projections. 
O Y a coincides with e, O Y2 with b*, and 0)'1 is 
normal to the other two. In this system a direction 
is defined by its direction cosines ml, m2 and m3 or 
by its polar angles cp and Q where cos o=m3 and 
tan (o = ml/m2. 

- Axial system (6): Orthogonal system OXI, OX2, OX3 
defined in the previous section and related to the 
orientation of the boundary plane. OX3 is normal to 
this plane and the axes 03(1 and OX2 lie anywhere 
in the plane. 

The deformation of the lattice due to the variation 
in composition is calculated in system 4 from the 
projections on system 4 of the unit cell of domains 1 
and 2, expressed initially in systems 1 and 2 respectively. 
This gives the misfit strain tensor in system 4. The 
elastic stiffness coefficients are initially given in system 
4. 

For a given pair of angular coordinates, cp, Q, in 
system 5, the corresponding orientation of a plane in 
system 6 is calculated, and hence the transformation 
matrix from system 4 to system 6 is derived. Using this, 
the stiffness coefficients and the components of S N in 
system 6 are obtained. The calculations of the values 
of T~ and S~, and hence the boundary energy W E, are 
carried out in this system, using equations (1) to (5). 

The values of cp and Q are varied stepwise by a loop, 
to scan all orientations over a hemisphere. 

The input for the program comprises 

(1) a set of lattice parameters for each component 
(2) the elastic stiffness coefficients c~B 
(3) specification of the steps and limits for the values 

of ~ and O. 

Its output is the boundary elastic energy for each 
specified orientation, and the description of the orien- 
tation in terms of crystallographic indices in axial 
system 3. 

2. Outline of the program for calculating the boundary 
elastic energy 

Several axial systems must be defined for the calcula- 
tions: 

- A x i a l  system (1): crystallographic system corre- 
sponding to crystal 1 (in general non-orthogonal). 

- A x i a l  system (2): crystallographic system corre- 
sponding to crystal 2. 

- A x i a l  system (3): an average axial system, inter- 
mediate between the above two; the angular and 
unit vector values are obtained by taking the half 
sum of the corresponding values in systems 1 and 2. 

- Axial system (4): the orthogonal system OZ1, OZ2, 
OZ3 in which the elastic stiffness coefficients are 
given. For monoclinic and triclinic feldspar crystals 
OZ3 coincides with e*, OZ2 with b, and OZI is 
normal to the other two. 

3. Limitations of the coherent elastic model 
The limitations of the simple model are of two sorts, 

those which are inherent in the model and those which 
are due to lack of data. An inherent limitation of the 
model is the fact that it does not allow for relaxation 
of stresses away from the boundary. The accidental 
limitations of the model are due to the fact that in 
general the lattice parameters, the elastic stiffness coef- 
ficients and the compositions of the domains are not 
known for the conditions of formation of the exsolu- 
tion. These two types of limitation will be dealt with 
separately in what follows. 

(a) Relaxation of stresses away from the boundary 
At the very beginning of unmixing by spinodal de- 

composition the diffraction spots are elongate perpen- 
dicular to the boundary plane (Cadoret & Delavignette, 
1969; Owen & McConnell, 1971 ; Owen, 1973), indicat- 
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ing that there is no variation in the lattice parameters 
parallel to the boundary plane, variations occurring 
only in the direction normal to it. Thus at this stage 
postulates (1) and (2) proposed by Cahn and adopted 
by us are justified to a first approximation. The orienta- 
tion of the boundary plane at the beginning of exsolu- 
tion could be calculated rigourously with this model, 
if the unstressed lattice parameters and stiffness coef- 
ficients were known for the compositions N(0)+ AN 
very close to the initial composition N(0) at the tem- 
perature and pressure of the unmixing. 

At a more advanced stage of unmixing, the lattice 
parameters are different within the domains in both the 
direction of the exsolution plane as well as normal to 
it. Coherence is generally maintained at the boundary 
between the domains, but the stresses are relaxed as the 
distance from the boundaries increases. As a result the 
unit cell of the lattice varies with position and tends to 
approach the unstressed state far from the boundaries. 
This relaxation can be shown to be similar to that 
observed near a dislocation network. When the ex- 
solution lamellae are thin, the parameters inside each 
lamella of the same composition are nearly constant, 
because of partial relaxation of the stresses, and differ 
less from the parameters on the boundary than do the 
unstressed parameters (Brown & Willaime, 1973). 

The schematic variation of R, a lattice parameter 
parallel to the boundary, as a function of distance from 
the boundary is shown in Fig. 2 by the curve ABCDE; 
P~ and P2 represent the normal unstressed parameters 
corresponding to domains 1 and 2, and A, C or E the 
parameter for the coherent model. According to the 
model the stored elastic energy is that for the passage 
P1 to C in domain 1 and P2 to C in domain 2. The 
simple model is only correct near the boundary. The 
stored elastic energy linked to exsolution with relaxa- 
tion is that corresponding to the passage P1 to R~ and 

$, 

q~ 
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domain 1 
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P1 
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Fig. 2. The variation of the lattice parameter (along OX1) as a 
function of the distance from the boundary along OX3. 
RI and R2 are the observed values of the parameter in 
domains 1 and 2 (after relaxation of the coherency stresses), 
C is the totally coherent parameter and P1 and P2 are the 
stress-free parameters. 

P2 to Rz. If the model were applied at all points using 
as initial parameters PI and P2 and as final parameters 
R1 and R2 the real parameters at each point, it would 
be possible to calculate the stored elastic energy for the 
real crystal under relaxation. In fact, the simple model 
calculates the sum of the stored elastic energy and the 
energy liberated by relaxation of the stresses. The model 
should thus use undeformed parameters and not those 
measured after relaxation. 

(b) Estimates of  the lattice parameters and elastic stiff- 
nesses for condition of  exsolution 

The calculation of the strains involves the differences 
between the unstressed parameters, and therefore their 
determination requires that the parameters themselves 
must be known with high precision. This is generally 
the case at room temperature but is less so at the high 
temperatures and/or pressures at which exsolution 
takes place. If the domains are very similar, both 
elastically and in composition, it is highly probable 
that the effects of temperature on both sets of param- 
eters will also be similar and therefore the differences 
will keep their same relative values. In addition, an 
increase in hydrostatic pressure will to a first approxi- 
mation reduce just those parameters which increase 
most readily with temperature, and therefore the two 
effects tend to oppose each other. The thermal strains 
produced by an increase in temperature of 1000°C are 
generally of the order of a few percent and are often 
opposite to those produced by a hydrostatic pressure 
rise of the order of 20-40 kilobars at room temperature, 
(Clark, 1966). Since compressibility increases with in- 
creasing temperature, a smaller pressure increase would 
be necessary at 1000°C to counterbalance the effect of 
the temperature rise. 

The boundary elastic energy depends on the average 
values of the elastic stiffnesses, because the boundary 
energy is the half sum of the energies in unit volume on 
both sides of the boundary, the strains in the two 
domains being equal and opposite (when the domains 
are equal in size). The value for this energy will depend 
on the strains and the elastic stiffnesses. The stiffnesses 
decrease with increasing temperature, the decrease 
being of the order of several percent per 100°C, and the 
increase in pressure needed to counterbalance this 
decrease is of the order of 3-5 kilobars for materials of 
average stiffness. As might be expected, the tempera- 

1 c~c 
ture and pressure coefficients [ 1  ( S T ) a n d  e ( c ~ ) ]  are 

greatest for the smallest stiffness coefficients, which 
correspond to the materials with largest thermal ex- 
pansion and compressibility coefficients. 

(c) Effect of  the composition and relative amounts of  the 
domains 

The model proposed by Cahn for spinodal decom- 
position involves planar sinusoidal variations in com- 
position. In order to calculate the elastic energy, it is 
necessary to choose two close compositions on either 

A C 3 0 A  - 2 
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side of the critical composition. Frequently, lattice 
parameters and elastic stiffness are only known for the 
extreme compositions and one must assume a linear 
relation between them and composition (or use the 
extreme compositions, which amounts to the same 
thing). 

The parameters on the boundary plane will depend 
on the relative sizes of the two domains and will not be 
equal to the mean values of their parameters, unless the 
domains are equal in size. In fact, the differences be- 
tween the parameters of the unstressed domain and 
those along the boundary plane will, to a first approxi- 
mation, depend inversely on the relative sizes of the 
domains (Cahn, 1968; Brown & Willaime, 1973). The 
values of W will be unaffected by changes in the relative 
sizes of the domains if the elastic stiffnesses in the two 
domains are the same, and only slightly affected if the 
stiffnesses are different. 

(d) Applicability of the simple coherent elastic model 
At the beginning of this section, the limitations of 

the simple model were outlined; we have shown that 
these limitations are not likely to be serious if we are 
concerned only with relative values of the elastic 
boundary energies at diffeient orientations, and this is 
all that is needed for predicting directions of their 
minima. 

For low-symmetry materials this can provide a 
stringent test. In performing our calculations with 
room-temperature lattice parameters and stiffnesses, 
we are testing the validity of the approximations out- 
lined in this section as well as of the model itself. A 
test of this kind is the application of the model to ex- 
solution systems in the feldspars, to be described in 
§ III below. 

4. Comparison with other boundary models 
The 0-lattice theory of Bollmann (1967, 1970) enables 

calculations to be made of the orientation of grain 
boundaries between crystals of the same composition 
but different orientations, and also of exsolution 
boundaries between lamellae of slightly different com- 
positions in a composite crystal. With the introduction 
of an additional hypothesis, this leads to the optimal- 
phase-boundary model of Bollmann & Nissen (1968). 

This latter method consists of allowing the two 
slightly different lattices to interpenetrate with a com- 
mon lattice point and nearly parallel orientations. On 
slight rotation of the two lattices, coincidence of some 
of the lattice points (or in general of equivalent points 
in the unit cells) is sought, which gives rise to a mul- 
tiple cell common to both lattices. 

The smallest of these multiple cells is the unit cell of 
the 0-lattice. The composition plane of the two crystals 
occurs on one of the faces of the 0-1attice unit cell. 
Bollmann & Nissen indicated that the boundary was 
the site of a double array of dislocations. The three 
potential composition planes for each possible 0-lattice 
are arranged in order of their surface energy, the mini- 

mum energy corresponding to the exsolution plane. 
The value of the energy is not calculated, a parameter 
P being used instead which is supposed to vary in a 
monotonic fashion with the surface energy. This is 
defined by 

where bl and b2 are the Burgers vectors for the disloca- 
tion arrays of spacings dx and d2. 

The only input data needed for calculations using 
Bollmann's optimal-phase-boundary model are the un- 
stressed lattice parameters corresponding to the com- 
positions of the two crystals (no stiffness coefficients 
are needed, the medium being considered isotropic) 
and the output is the orientations of the two lattices 
and of the plane of best fit. 

The two models are compared schematically in Fig. 
3. Both models correspond only partly to the observed 
situation near the boundary. The weakness of the 
coherent elastic model is not to take into account the 
relaxation of the stresses away from the boundary 
(Fig. 3, C to D), though this may not substantially 
affect the orientation of the calculated composition 
plane (see previous section.) Its major advantage is 
that it allows for elastic anisotropy. If the exsolution 
took place by spinodal decomposition or by homo- 
geneous nucleation, the simple coherent elastic model 
is justified provided the correct parameters and stiff- 
nesses are used. Bollman & Nissen's model does not 
allow for coherence and should require that the ex- 
solution take place by heterogeneous nucleation, the 
lattice of the nucleating phase being oriented relative 
to the host lattice by a dislocation network, the opti- 
mum fit corresponding to a minimum in its energy (or 
in the parameter P). 

Bonnett & Durand (1972) proposed a different purely 
geometrical method for calculating the position of the 
boundary plane, following Bollmann's 0-lattice theory. 

C Coherent elastic model D 

J Am~otropic coherent Relaxation Anisotropic coherent 

I 
B Incoherent 

botropic incoherent Anisotropy Anisotropic incoherent 

E Optimal phase boundary model F 

Fig.3. Comparison of the coherent elastic model (C) and the 
optimal-boundary model (E). It is probable that the real 
state of the boundary is partial coherency between states 
D and F. 
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They calculated the pure strain on passing from one 
lattice to the other, as repxesented by the quadric as- 
sociated with the strain tensor. It is always possible 
to reduce the problem to one of two cases: 

(1) The pure strain coefficients e~, 82 and 83 parallel 
to the principal axes of the quadric have the same 
sign - the quadric is an ellipsoid and the plane of mini- 
mum deformation (assumed to be the boundary plane) 
is that containing the two axes with the smallest strain 
coefficients, 82 and 83. 

(2) Two of the principal pure strain coefficients are 
positive e~ and 82 with 8~ > 82 and the third is negative - 
the associated quadric is a one-sheet hyperboloid. The 
planes of minimum strain (the boundary planes) con- 
tain the principal axis of the quadric parallel to 82 and 
one of the directions of zero strain between 8~ and ca. 
There are thus two planes of minimum strain sym- 
metrically situated with regard to the plane e~ 82 (and 
82 83).  

The parameter P defined by Bollmann & Nissen 
(1968) thus becomes 

p = (d)2 + (8,,)2 

where e '=  82 and e" =83 in the first case and e '=  0 and 
8"= 82 in the second case. 
In our notation 

P = (Sf) 2 + (S2N)2-= (Sf) 2 +(S2E) 2 

where the axes OX~ and 0)(2 in the boundary plane are 
oriented such that Sg is zero. The elastic boundary 
energy is then given by 

W~=½ ~ c~aS ~ Sff with o~= 1,2 
,: I ~ , ~  

/?=1,2,3,4,5. 

The terms containing Sf and Sf (those appearing in P) 
are generally the most important. It is clear that when 
the deformation needed to pass from lattice 1 to lattice 
2 is nearly isotropic, the multiplication of the strain 

OP 

peristerites labradorites bytownites An 

Fig. 4. The compositions of the different exsolution types in the 
feldspars. 

terms by the stiffness coefficients (generally unequal) 
will produce an inequality in energy for the same strain 
in different directions. The purely geometrical model 
will only work well when the strain is very anisotropic. 

III. Application of the coherent elastic boundary model 
to the feldspars 

1. Introduction 
The feldspars form the most highly studied mineral 

group. They are tectosilicates of monoclinic or triclinic 
symmetry. Those of interest here lie within the com- 
position triangle whose corners are KA1Si3Oa (K-feld- 
spar), NaA1Si3Os (albite), and CaAlzSi2Oa (anorthite). 
They show exsolution phenomena ranging from coarse 
scale to very fine scale, often associated with a beautiful 
iridescence in visible light. The exsolutions fall into 
three broad categories: those in the alkali feldspars (K, 
Na series) known as the perthites; those in the plagio- 
clases (Na, Ca series) known according to composition 
range as peristerites, labradorites, and bytownites; and 
those in the more general composition range (Na, Ca, 
K) known as antiperthites. The last named will not be 
considered here, since not enough is known about 
them experimentally. The composition ranges are 
shown in Fig. 4. 

Feldspars of given composition can differ in their 
state of Si, A1 order, and this can affect their lattice 
parameters. In the alkali feldspars it can result in 
inversions between monoclinic and triclinic symmetry, 
occurring at about 600-900°C, commonly associated 
with the production of twin textures. Thus, K-feldspars 
may be monoclinie [sanidine and orthoclase (totally or 
highly disordered)] or triclinic [intermediate microcline, 
(low obliquity and moderate ordering) and maximum 
microcline (high obliquity and total ordering)]. High 
albite and low albite are both triclinic at room tem- 
perature. The albites and microclines tend to twin in 
ways which imitate monoclinic symmetry (Albite law, 
Pericline law, and the superposition of both which 
gives 'cross-hatched microcline'). Such effects occur 
not only in homogeneous alkali feldspars but in the 
exsolution domains in the perthites; in this case the 
twinning reduces the strain energy along the boundary 
between a monoelinic and a triclinic domain (Willaime 
& Gandais, 1972). Twinning does not occur in exsolu- 
tion textures in the plagioclases, which are all triclinic. 

The perthites have been given descriptive adjectives 
or prefixes according to their different observed charac- 
teristics. We shall ignore these until a later section, when 
those relevant for our purposes will be defined. 

The exact mechanism of the exsolution is not known 
in all cases, but is generally considered to occur by 
spinodal decomposition or homogeneous nucleation 
(Owen & McConnell, 1971; McConnell, 1973; Owen, 
1973; Smith, 1972). The exsolution textures are lamel- 
lar and are essentially coherent. Isolated dislocations 
may occur along the boundaries with a periodicity 
in one ease of the order of lpm (Aberdam & Kern, 

A C 30A - 2* 
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1962; A b e r d a m ,  1965), bu t  they  in no  sense fo rm a 
d i s loca t ion  ne twork .  Genera l ly ,  two sets o f  lat t ice 
pa rame te r s  exist for  the two domains ,  ind ica t ing  tha t  
r e laxa t ion  has  occur red  away  f r o m  the bounda ry .  
W h e n  the lamel lae  are less t han  abou t  1 p m  th ick  the 
sets of  lat t ice pa ramete r s  for  the two domains  are 
s t ra ined  (Laves,  1952; Smith ,  1961 ; Wr igh t  & Stewart ,  
1968; Brown & Wil la ime,  1973; V i swana than ,  1968, 
1973; K o r e k a w a ,  Nissen  & Phi l ipp,  1970). In the case 
o f  the l ab rador i t e s  only one set o f  spots  occurs sug- 
ges t ing tha t  the  two d o m a i n s  have  the same lattice 
pa ramete r s  (Nissen,  E g g m a n n  & Laves,  1967). 

2. Input data 
Accura te  measu remen t s  nei ther  of  lat t ice pa rame te r s  

o f  the actual  exsolu t ion  d o m a i n s  [according to § 
II .3(a) would  they  not  be the best choice] nor  of  elastic 
stiffnesses are genera l ly  available.  It  is therefore  neces- 
sary to ma tch  the d o m a i n s  agains t  s imi lar  h o m o g e n e o u s  
fe ldspars  for which  the measu remen t s  are avai lable .  
This  requires  a knowledge  of  the cha rac te r  o f  the  
domains ,  the i r  compos i t ion ,  s tate  of  order,  and twin-  
ning.  The  p rob lems  conce rn ing  these are o f  a different  
na tu re  for  the  per thi tes  and  the p lagioclase  exsolu- 
t ions.  

Table  1. Lattice parameters used in the calculations 

Bulk 
composition 

Mineral name Or Ab An a (A) 
1 Synthetic sanidine 100 0 0 8.603 
2 Synthetic sanidine 59 31 0 8.425 
2 Synthetic sanidine 39 61 0 8.320 
4 Synthetic high albite 0 100 0 8.151 
5 Synthetic sanidine 8.353 
6 Synthetic sanidine 8.300 
70r thoclase  91 7 2 8.562 

8 Intermediate microcline 86 13 1 8.578 

9 Maximum microcline 100 0 0 8-589 
9M Maximum microcline 8.585 

10 Strained microcline 83 17 0 8.615 
11 Strained low albite 0 100 0 8.120 
12 Synthetic intermediate albite 0 100 0 8.160 
13 Low albite 2 98 0 8.135 

13A Low albite 8-135 

13P Low albite 8.129 

14 Low albite 1 98 1 8.141 
15 Oligoclase 1 74 25 8.159 
16 Low albite 2 98 0 8.208 

17 Oligoclase 3 75 22 8.199 

18 Andesine 4 59 37 8.171 
19 Andesine 0 60 40 8-170 
20 Labradorite 1 45 54 8-169 
21 Labradorite 1 41 58 8.180 
22 Labradorite 8.177 
23 Labradorite 8.169 
24 Labradorite 0 31 69 8.175 
25 Anorthite 0 7 93 8-179 

Precision _+ 0.002 A and + 0"02 ° except for 10, 11, 16, 

Parameters 
b (~) c (A.) 0c (o) 13 (°) ), (o) Reference 
13.021 7.178 90 116.01 90 [9] 
12.999 7.167 90 116-09 90 [9] 
12.977 7.159 90 116.20 90 [9] 
12.862 7.115 93-65 116.45 89.98 [9] 
12.983 7-162 90 116.17 90 Footnote 1 
12.957 7.152 90 116.30 90 Footnote 1 
12.996 7-193 90 116.01 90 Spencer C 

[4, 11] 
12"960 7"211 90"30 115"97 89"13 Spencer U 

[1, 11] 
12.963 7.223 90.62 115.95 87.73 Hugo KCI [9] 
12.958 7.223 90 115.95 90 Footnote 2, 

Hugo KCI [9] 
12.916 7.193 90.70 116.38 87-53 L29 [3] 
12-802 7.177 93.95 116.75 87-92 L29 [3] 
12.810 7.152 93.95 116.48 88.60 219 [6] 
7-788 7.154 94.23 116.52 87-72 Spencer T 

[5, 11] 
12.753 7.154 90 116.52 90 Footnote 2, 

[5, 11] 
12.788 7.135 90 116.52 90 Footnote 2, 

[5, 11] 
12"785 7-159 94"26 116"59 87"68 191 [2] 
12"843 7"127 93"80 116"41 89"28 170 [2] 
12"839 7"173 93"86 116-25 87"52 F 101, 600°C 

[6] 
12.849 7.129 93.43 116.20 88-80 F 36, 600°C 

[7] 
12.862 7.119 93.59 116.30 89.68 5 [2] 
12.873 7-105 93.38 116.23 90.35 An30Ans0 [10] 
12.862 7.108 93.58 116-22 89.81 81 [2] 
12.870 7.109 93.52 116.20 90.04 96 [2] 
12.862 7-108 93.60 116.29 89.74 sodic [8] 
12.851 7.112 93.56 116.17 89.84 calcic [8] 
12.865 7.102 93.50 116.14 90-31 45 [2] 
12.873 7-090 93.21 115.97 91.11 116 [2] 

Footnote 3 
17:+0"006-8 A and 0"05-8 °. 

Footnotes: (1) These parameters were invented 
feldspars (ref. [7]) and the effect 

(2) A for Albite twin with b'=d0t0 
P for Pericline twin with a'=a sin y, c'=c sin ct, ,8 '=180-,8" 
M for Albite and Pericline twins (M type), average of A and P. 

(3) For convenience the c axis for anorthite was taken as 7 A. 
References 

[1] Bailey & Taylor (1955) [6] Grundy & Brown (1969) 
[2] Bambauer, Eberhard & Viswanatham (1967) [7] Grundy & Brown (1973) 
[3] Brown et al. (1972) [8] Nissen & Bollmann (1968) 
[4] Cole, Sorum & Vennard (1949) [9] Orville (1967) 
[5] Cole, Sorum & Taylor (1951) [10] Smith (1956) 

taking into account thermal expansion data for albites (ref. [6]) and potassium 
of the substitution of K + for Na + in the feldspar framework. 

[11] Spencer (1937) 
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For the perthites, it is sufficiently good to assume 
domain compositions of pure K- and pure Na-feldspar: 
evidence for this will be given below, in § III.5 (actual 
compositions of  exsolution pairs range from Or0/Or~00 
to Or~0/Or7s). The more important differences concern 
symmetry and twinning. For trial purposes, we may 
divide perthites into four groups, depending on the 
symmetry of  the domains (counting finely twinned 
triclinic domains as averaging to monoclinic). Writing 
the K-rich component first, they are as follows: 

Group (1): Monoclinic/monoclinic 
Group (2): Monoclinic/triclinic 
Group (3): Triclinic/monoclinic 
Group (4): Triclinic/triclinic. 

The correlation of these groups with observed 
materials will be left to §§ III.4 and III. 5. For the twinned 
materials, lattice parameters are constructed from the 
corresponding single-crystal lattice parameters as fol- 
lows: 

Albite law: a, do,o, e, 90 °, fl, 90 ° 
Pericline law: a sin 7, b, c sin c~, 90 °, 180-fl*, 90 ° 
Cross-hatched microline: average of  the above 
t w o .  

In the plagioclases, our state of knowledge is dif- 
ferent for the three groups. For the peristerites, the 
composition pair is Ab100An0/Ab75Anz5 (Laves, 1954; 
Brown, 1960; Fleet & Ribbe, 1965; Ribbe, 1960) and 
the feldspar is highly ordered. For the bytownites 
(Huttenlocher intergrowth*) the compositional separa- 
tion is less well known but may be considered to be 
AbaaAn67/Ab10-oAn90-1o0 (Nissen, 1968, 1972). For 
the labradorites (Boggild intergrowth*) the situation 
is much less clear because of  lack of data on the com- 
position and state of order of the domains and the 
unknown role of potassium (Nissen, Eggmann & 
Laves, 1967; Nissen, 1971). In other words, in this 
series differences between the domains due to state of  
order may perhaps be as important as those due to 
composition. Moreover, it is known (Nissen, 1969) 
that in the bulk composition range An40-An60 the lat- 
tice parameters vary erratically with composition, 
though in other parts of  the plagioclase system they 
vary more smoothly• All that can be done in these 
circumstances is to try various combinations of  sets of  
lattice parameters measured on materials in the right 
composition range. 

Although the lattice parameters for very many 
homogeneous feldspars at room temperature have 
been measured, few high-temperature results are avail- 
able. In general, room-temperature parameters for 
alkali feldspars and plagioclases have been used as no 
high-temperature measurements exist for the stiffness 
coefficients; two calculations using high-temperature 
parameters (directly measured or estimated from 

* Term suggested by Smith (1972) 



324 T H E  D E T E R M I N A T I O N  O F  T H E  O R I E N T A T I O N  O F  E X S O L U T I O N  B O U N D A R I E S  

t h e r m a l  expans ions)  have  however  been inc luded  for  
compar i son .  

The  lat t ice pa rame te r s  used in the ca lcu la t ions  are 
given in Tab le  1. (The serial number s  in the Table  do 
no t  refer to pa r t i cu la r  specimens,  but  are used in cross- 
reference to Tab le  3). 

Stiffness coefficients for  a series o f  seven alkal i  
fe ldspars  and  five plagioclases  have  been measu red  at  
r o o m  t empera tu re  (Ryzhova ,  1964; R y z h o v a  & 
Alexandrov ,  1965; Ryzhova ,  A lexand rov  & Belikov,  
1969) and  those used are r ep roduced  in Table  2. Thir-  

teen stiffness coefficients were measu red  for  each  of  
the two monoc l in i c  fe ldspars  a n d  for  each of  the  ten  
t w i n n e d  tr icl inic ones t rea ted  as monoc l in i c :  since the  
t r ic l inic  fe ldspars  are very near ly  monoc l in ic ,  the  errors  
i n t roduced  by this  s impli f icat ion are p r o b a b l y  no t  very 
great  c o m p a r e d  with  the errors  in the coefficients them-  
selves; these are o f  the order  of  3 - 1 0 %  depend ing  on 
the coefficient (Alexandrov  & Ryzhova ,  1962; R y z h o v a  
1964; S immons ,  1964). The  differences be tween coef- 
ficients for the plagioclases  seem to vary  sys temat ica l ly  
wi th  compos i t ion ,  those  r ich in A n  being stiffer. I t  

Exsolution 
Perthites group 1 
(normal perthites) 

Perthites group 2 
(Braid perthites) 

Nature of 
No. domains]" 

1 Sa/H-Ab(P)* 
2 Sa/H-Ab(A)* 
3 Or/L-Ab(P) 
4 Or/L-Ab(A) 
5 Or/L-Ab(A) 
6 Or/L-Ab(A) 
7 Sa/Sa 
8 Sa/Sa(HT)* 

9 Or/L-Ab 

Perthites group 3 12 
(Diagonal association) 13 

14 
15 
16 

Perthites group 4 
(Plate-perthite) 

10 I-Mi(M)*/L-Ab 
11 M-Mi(M)/L-Ab 

I-Mi/L-Ab(A) 
I-Mi/L-Ab(A) 
M-Mi/L-Ab(A) 
M-Mi/L-Ab(A) 
M-Mi/L-Ab(A) 

17 M-Mi/L-Ab 

Peristerites 

Bytownites 

Labradorite 

18 M-Mi/L-Ab 
19 M-Mi/L-Ab 

20 L-Ab/L-O1 

21 L-Ab/L-O1 

22 L-Ab/L-OI 

23 L-Ab/L-OI(HT)* 

24 L-Ab/An 

25 L-Ab/An 

26 And/Lab 

27 And/Lab 

28 Lab/Lab 

Table  3. Results of the calculations 
Lattice 

parameters 
used:~ celt ~o 0 h k 
1 4P* A 90 98.5 7.9 0 
1 4A* A 90 99-5 6.8 0 
7 13P A 90 100 6.4 0 
7 13A A 90 99.5 6.8 0 
7 13A C 90 101.5 5.7 0 
7 13A F 90 97.5 8.4 0 
2 3 A 90 99 7.1 0 
5 6 A 90 92.5 25 0 

7 13 A 124 107 ]" 0.9 
123 137 T 0-6 

8M*13 B 119"5 104"5 i 1"2 
9M 13 B 116"5 106"5 l" 0"8 

8 12A B 79 98 7"8 2"5 
8 12A C 78 100 6"3 2"2 
9 12A B 69 97 8"5 5"6 
9 12A C 68 98 7"4 

10 l l A  B 70 99"5 6"4 3"9 

9 14 B 54 38 0"2 1 
88 96 10"4 1"1 
24 74 0"02 1 

9 14 C 77 88 28 12 
9 14 F 52 100"5 0"8 1 

86 66"5 1"8 0"3 

14 15 C 169 74 0"2 
103 119 ~ 1"1 

14 15 D 169 74 0"2 
102 118 2~ 1 

14 15 F 172 81 0.3 g 
100 111 2[ 0-9 

16 17 C 175 68 0.5 
96 130 4 0.2 

24 25 E 92 114.5 ~ 0.2 
171 75 0"1 

24 25 F 91 113 3 0.2 
171 76 0.1 i~ 

18 21 E 97 117.5 3 0-5 
160 68 0-3 

19 20 E 97 116-5 ~ 0.6 
179 87.5 0 12 

22 23 E 63-5 80 ]g 
178 30 1"7 ;g 

Calculated minimum Wmltl 
1 10'J m -3 

1 360 
1 420 
1 480 
1 600 
1 620 
1 380 
1 5"4 
1 8"9 

0"3 920 
0"8 910 
0"3 107 
0"3 113 

1 350 
1 370 
1 170 
1 210  
1 14 

1-3 1420 
1 1360 
0"02 1470 
1 1560 
0"2 1530 
1 1530 

1-3 14-9 
1 "7 14"9 
1"3 15-2 
1"7 15"2 
0"7 12 
1"3 12 
1"8 37 
2"3 37 

1"1 0-31 
0"9 0-31 
1 "0 0.22 
0"8 0"22 
1 "2 1 "0 
0"9 1-0 
1.2 0"36 
0"2 0.36 
O'6 O.O2 
3"5 0"02 

* P for Pelicline twinned, A for Albite twinned, M for M-type twinned, HT for high-temperature. 

Wmax Pmax 
Wmtn Pm,n 

6-7 14"6 
6.0 12-8 
5.2 11 
4"6 9"3 
5"6 9.3 
9-6 9.3 

20 54 
4-4 10 

5-1 2.9 
5-1 
4-7 2.9 
4-6 2.9 

6-7 15-3 
8-2 15-3 

22 32 
18 32 

260 300 

2-6 3"4 
2.8 
2.6 
3.1 3"4 
4-1 3"4 
4.1 

24 32 
24 
25 32 
25 
28 32 
28 

5.9 7.1 
5"9 

310 408 
310 
340 408 
340 
26 25 
26 

113 170 
113 
380 220 
38O 

t Abbreviations used H (High); L (Low); I (Intermediate); M (Maximum); Sa (Sanidine); Ab (Albite); Or (Orthoclase); 
Mi (Microcline); Ol (Oligoclase); And (Andesine); An (Anorthite); Lab (Labradorite), 

:~ Cross references to Tables 1 and 2. 
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Normal perthite is not clear whether the differences within the K-rich 
feldspars are significant or not. In any case the feld- 
spars are all so similar elastically that we felt justified 
in our calculations in using only one set of elastic 
coefficients for both compositional domains. No high- 
temperature measurements exist for the feldspars. 

It is of interest to find the effect of elastic anisotropy. 
This can best be done by making comparison calcula- 
tions with comparable isotropie stiffnesses. Table 2 
therefore includes stiffness coefficients for a glass of 
composition similar to a feldspar. 

Plate perthite 
(group 4 ) 

Fig.5. Stereographic projection of the positions of the cal- 
culated energy minima compared with the observed exsolu- 
tion boundaries for perthites (groups 1-4) - see Table 3. 
Symbols: - Physically reasonable input data, in good agree- 
ment O, in poor agreement + with observations. Phys- 
ically unreasonable input data I .  

Bytownite Peristerite ? 

Oytownite 

Fig.6. Stereographic projection of the positions of the cal- 
culated energy minima compared with the observed exsolu- 
tion boundaries for peristerites and bytownites. Same sym- 
bols as Fig. 5. 

3. Results 
Table 3 gives the results of the calculations. The 

numbels in the second column are serial numbers used 
for reference in the text. Column 3 gives the character 
assumed for the domains. The corresponding choice 
of lattice parameters and stiffness coefficients is 
indicated in columns 4 and 5 by numbers and letters 
referring respectively to Tables 1 and 2. 

For the perthites, all reasonable combinations of 
twins laws and symmetries were tried, each with 
reasonable choices of elastic stiffnesses. In addition, 
there were tests with isotropic elastic stiffnesses (6 and 
19), strained parameters (16), less extreme composi- 
tions (7), and hypothetical high-temperature param- 
eters (8). For the peristerites and bytownites, one 
choice of room-temperature lattice parameters was 
used for each, combined with different reasonable 
stiffnesses; in addition, there were trials using high- 
temperature parameters (23) and isotropic stiffnesses 
(22 and 25). For the labradorites, many calculations 
using reasonable compositional pairs were carried out, 
two representative examples are given (26 and 27). A 
third example (28) uses a combination of spacings 
deduced indirectly on the exsolution material, prob- 
ably with lower accuracy (see § III.5). Calculations 
were carried out for values of ~0 and 0 scanning over 
half of space in 10 ° steps, and in 1 o steps in the neigh- 
bourhood of the minima. 

The positions of these minima are given in terms of 
tp and Q, and also of the crystallographic indices (hkl) 
in column 6. They are plotted on stereograms in Figs. 
5-7. The values of the minimum boundary strain 
energy Wmln are given in column 7 and the ratios 
Wmax/Wml, in column 8. The ratio of the pure strains 
Pmax/Pmin on passing from one lattice to the other are 
given for comparison in column 9. They were calcu- 
lated using a program written to determine the orienta- 
tions of the thermal-expansion ellipsoid (Willaime, 
Brown & Perucaud, 1974). 

We may call attention here to the occurrence of more 
than one minimum in certain perthites (examples 9,17- 
19) and in all the plagioclase exsolutions. 

4. Discussion o f  the calculated results 
This section deals with the results as related to the 

model and compares them with those of the model of 
Bollmann (Bollmann & Nissen, 1968; Nissen, 1972). 
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Mineralogical discussion, leading up to a comparison 
of calculated and observed results, will be given in 
§ III.5. 

It can be seen from the clustering of calculated 
orientations in Fig. 5 (Table 3, examples 1-19) that 
the empirical classification of the perthites into four 
gioups has been justified. This allows us to treat the 
groups as entities in the following discussion. We shall 
show below that they are to be identified with observed 
series as follows: 

Group (1), normal perthites, represented by moon- 
stones 

Group (2), braid perthites 
Group (3), diagonal association 
Group (4), plate perthites, 

and we shall use these names where ap- 
propriate hereafter. 

(a) Role of stiffness anisotropy and misfit anisotropy 
The value of the minimum boundary energy, Wmi,, 

is sensitive to the difference in the parameters of the 
two domains and hence to the approximations of the 
model - assumption of complete coherence, no relaxa- 
tion of the stresses away from the boundaries and use of 
the lattice parameters for the end compositions. It 
decreases as closer compositions are used. Comparisons 
between different exsolutions must therefore be made 
with caution. 

On the other hand, the ratio Wm.~x/Wmin is nearly the 
same for extreme parameters and intermediate param- 
eters. This ratio can thus be compared for the different 
calculations. It gives a measure of the variation of the 
boundary elastic energy with boundary orientation. 
The ratio Pmax/Pmin gives a measure of the misfit ani- 
sotropy (see § I1.4). The anisotropy of the elastic stiff- 
ness coefficients is of the order of 2.5 in the feldspars - 
the ratio cz,/cll ranges from about 2 to 3. It can be 
seen that in some cases the stiffness anisotropy is 
negligible compared to the misfit anisotropy; in others, 
they are of the same order of magnitude. 

When Pmax/Pm~,>__ 10 (bytownites, peristerites, nor- 
mal perthites, diagonal association) the stiffness anisot- 
ropy is negligible compared with the misfit anisotropy, 
hence the influence of the elastic stiffnesses on the 
orientation of the plane of minimum energy is small. 
The use of isotropic elastic stiffnesses (Table 2, F) in 
the calculations only changes the orientation by 1 ° for 
the bytownites (Table 3, no. 25) and by about 10 ° for 
the peristerites (no. 22). A fortiori the use of the elastic 
stiffnesses for a feldspar of composition different from 
that of the bulk composition has even less effect on the 
orientation of the boundary plane. For the peristerites, 
the orientation varied less than 1 ° on using the stiff- 
nesses for albite (C) or those for oligoclase (D) (Table 
3, no. 20 and 21). Thus, the use of the elastic stiffnesses 
for labradorite (Table 2, E), those for bytownite not 
having been measured, will not significantly affect the 
results for the bytownites, 

The large misfit anisotropy in these cases justifies 
the use of the optimal-phase-boundary theory for the 
calculation of the orientation of the exsolution 
boundary. The results of Nissen (1972) for these ex- 
solutions are in good agreement with our results (Wil- 
laime & Brown, 1972 and Table 3). For comparison, 
we have done a calculation (Table 3, no. 16) with the 
lattice parameters used by Nissen in the case of the 
diagonal association, which were those measured on a 
specimen after partial relaxation (Brown, Willaime & 
Guillemin, 1972); it gave Pmax/Pmin = 300. 

For braid and plate perthites, on the contrary, the 
deformation is quasi-isotropic; the ratio Pm,x/Pmin is 
2"9 and 3.4 and is of the same magnitude as the stiff- 
ness anisotropy. The orientation of the calculated 
boundary plane is very sensitive to valiations in the 

Fig.7. Stereographic projection of the positions of the cal- 
culated energy minima compared with the observed exsolu- 
tion boundaries for labradorites. Same symbols as Fig. 5. 

(a) (b) 
Fig.8. Stereographic projection of the contours of equal 

boundary elastic energy for plate perthite: (a) elastic stiff- 
nesses for microcline (Table 3, no. 17); (b) elastic stiffnesses 
for albite (Table 3, no. 18). The zones of low energy are very 
spread out and are almost the same for both. The minima 
are not in the same places, 
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elastic stiffnesses. In the case of the plate perthites the 
stiffnesses for microcline (Table 2, B) gave three direc- 
tions of minimum energy [Fig. 8(a), Table 3, no. 17]. 
On using the elastic stiffnesses of albite (C) only one 
of these minima remained (Table 3, no. 18) but rotated 
by 15 ° compared with the positions obtained with B; 
in the directions corresponding to the other two mini- 
ma, the boundary elastic energy remained low, but was 
not a minimum [Fig. 8(b)]. Using isotropic elastic 
stiffnesses, two minima were obtained which bear no 
relation to the observed boundaries in the plate 
perthites (Table 3, no. 19). Because of the quasi-isotropy 
of the strain, the optimal-phase-boundary model can- 
not give results in accordance with observations. In 
fact, Nissen (1972) found no minima corresponding to 
plate perthites for the relative orientation given by 
Laves & Soldatos (1962). 

For a perthite with domains of orthoclase and un- 
twinned low albite (Table 3, no. 19) the calculated 
orientations corresponding to the energy minima were 
compared with the results of Bollmann & Nissen (1968) 
using the same lattice parameters: they are completely 
different, because the stiffness anisotropy is as im- 
portant as the misfit anisotropy. 

(b) The effect of  relaxation of stresses away from the 
boundary 

In the discussion of the coherent elastic model 
(§ II. 3a) it was shown that unstressed lattice param- 
eters should be used for the calculation. The results ob- 
tained using parameters deformed through coherence 
stresses are a complicated function of the elastic energy 
and the relaxation energy. To examine the effect 
empirically, a calculation (no. 16) was carried out 
using parameters measured on a crystal with partial 
relaxation of the coherency stresses neglecting the zone 

Fig.9. Stereographic projection of the contours of equal 
boundary elastic energy for bytownite (Table 3, no. 24). Two 
minima of very nearly equal energy are clearly visible. The 
labradorites and peristerites also show two minima. 

of rapid change near the boundary, and the result was 
compared with calculations (nos. 12-15) using different 
unstressed parameters. It can be seen from Fig. 5 that 
the orientations are very close to one other; the dif- 
ference between nos. 16 and 14, with similar stiffnesses, 
is about 4 ° . 

One can conclude that the energy corresponding to 
the relaxation of stresses and the coherent-boundary 
elastic energy vary in the same way with the orientation 
of the boundary. This justifies a posteriori the simple 
model which neglects relaxation. 

(c) Use of high-temperature lattice parameters 
Calculations have been carried out using parameters 

at 600°C, a temperature near the supposed exsolution 
conditions. For the perthites (Table 3, no. 8 - invented 
parameters) the calculated minimum is displaced by 
about 8 °. For the peristerites (no. 23) the deviation is 
about 10-15 °. As the value of Pmax/Pm~, falls from 54 to 
l0 in the first-named example, and from 32 to 7.1 in 
the second, it is necessary to use the correct high- 
temperature elastic stiffnesses. In these two cases, the 
use of room-temperature lattice parameters and stiff- 
nesses gives better results. 

(d) Errors in the input parameters 
Errors in the input data (compositions used, lattice 

parameters and elastic stiffnesses) will lead to uncer- 
tainty in the calculated exsolution boundary. The effect 
of errors in lattice parameters was examined by calcula- 
tions in which the parameters were varied one at a time 
by the magnitude of the experimental error. There will 
be the greatest effect on the orientation when the par- 
ameter differences are small and the misfit anisotropy is 
small. All cases were examined and the calculated differ- 
ences of orientation are given in Table 4. 

(e) The values of the energy minima 
In the cases Of the peristerites, the labradorites and 

the bytownites as we noted in §III .  3, our calculations 
gave two directions for the optimal boundary. In all 
these calculations the values of WmJn are equal within 
1%, for orientations calculated with an error of 0.5 °. 
Fig. 9 shows a stereographic projection of the contours 
of equal boundary elastic energy in a case with two 
minima (bytownite). 

The theory offers no explanation, at this stage of 
approximation, as to why one minimum rather the 
other should be chosen in any given case. 

These double minima correspond to the ease, where 
the quadric associated with the pure-strain tensor is a 
hyperboloid* (see § II.4) and the parameter P is a 

* In the three cases considered this result could be pre- 
dicted without any calculation, since a and b vary in the op- 
posite way to e. But the fact that all three parameters may 
vary in the same way is no proof of the existence of a single 
maximum; angular variations may be very important and a 
direction may exist (other than a, b or e) for which the sign 
of a variation is opposite to that of a, b and c. 
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minimum for two different orientations with a value of 
P =  (Sf)'. The boundary elastic energy is a minimum 
for orientations close to those where P is a minimum, 

1 E 2  E E E E E E 
W E ,~, ~[c22(82  ) dr- c 2 3 8 2 8 3  -t- c 2 4 8 2 5 4  --[- c 2 5 5 2 8 5 ]  . 

In this expression the term c22(8f) 2 is the most impor- 
tant and has the same value for the two orientations for 
which P is a minimum. For the two directions of 
minimum boundary energy, the elastic anisotropy 
makes all the terms very slightly different. This ex- 
plains why the values of Wmin are almost equal. 

When the elastic anisotropy is not negligible com- 
pared to the strain anisotropy (braid perthites, plate 
perthites), the multiple minima Wmtn differ by up to 
6 %. In such cases, the elastic anisotropy plays a role 
in determining the number of minima (1 to 3 instead of 
2), their orientations and their values. 

5. Comparison of the observed and calculated exsolution 
boundaries 

It is necessary to review the experimental evidence for 
each group of exsolutions separately before the cal- 
culated orientations can be compared with the ob- 
served. It should be stressed at this point that only the 
normal perthites are considered by us to be a product 
of primaly exsolution, the other types being con- 
sidered to have formed from normal perthites by re- 
arrangement (Brown, Willaime & Guillemin, 1972 and 
unpublished results). 

(a) Normal perthites [Group (1) perthites. See Fig. 5] 
These are well known from the work of Boggild 

(1924) on a series with fine-scale lamellations - the 
moonstones. It is generally accepted that the K-rich 
domains and the Na-rich domains are monoclinic or 
finely-twinned triclinic. The measured range of Q values 
(known with good precision) is 98.5-101.8 ° . The cal- 
culated range, 97.5-102 ° for physically reasonable in- 
put, agrees excellently with the observed. The cal- 
culated values show no significance associated with 
the character of the domains or the twinning; a pair 
comprising two sanidines of intelmediate composition 
gives essentially the same value of 0 as pairs comprising 
pure sanidine or orthoclase with high or low albite 
twinned according to the Albite or the Pericline 
law. 

(b) Braid perthites [Group (3) perthites. See Fig. 5] 
These are less well known than the previous group. 

They have been studied chiefly by Goldich & Kinser 
(1939) and Ramberg (1972) using mainly optical 
microscopy. Our electron-optical results are extremely 
complex and are not discussed here. 

In coarse braid perthites, albite occurs in large zigzag 
lamellae in a cross-hatched microcline matrix. The 
albite is coarsely twinned according to the Albite law, 
each twin composition plane occurring where the 
lamella changes direction (Goldich & Kinser, 1939, p. 

411, Plates IA and IIA). The boundary plane is nearly 
parallel to (110) ((o-_-60 °, 0=_90 °) (measured from 
Goldich & Kinser, 1939) or, to (861) (tp~ 117 °, 0-~95 °) 
in braid microperthite (Ramberg, 1972). Contrary to 
the observations of Ramberg (1972) we found that 
braid microperthite from the same localities is not in 
diagonal association (unpublished work). 

A calculation (Table 3, no. 9) using the parameters 
of orthoclase and twinned low albite gave two minima, 
one near the observed orientation (~  10°), the other 
farther (N40°). Two further calculations (nos. 10-11) 
using the average monoclinic parameters for Albite- 
and Pericline-twinned intermediate and maximum 
microcline gave one minimum near the observed 
orientation (~  10-15°). 

(c) Diagonally associated perthites [Group (3) perthites. 
See Fig. 5] 

Smith & MacKenzie (1959) studied a cryptoperthite 
whose X-ray diffraction patterns presented a double 
spot for triclinic K-rich domains, very slightly rotated 
from the albite twin position, and Albite-twinned 
albite spots; they called this the diagonal association. 
An electron-optic study (Brown, Willaime & Guille- 
rain, 1972) showed that the K-rich domains occur in 
large zigzags, each orientation of the zigzag corre- 
sponding to one of the rotated twins. The bound- 
ary-plane orientation between these K-rich domains 
and the finely Albite-t~vinned triclinic Na-rich 
domains varies from (6-61) to (6--31) (~0~_60-75 ° and 
0 ~ 100°) • 

This kind of pe~thite differs from normal perthites 
because, on the one hand, the K-rich domains are 
triclinic instead of monoclinic, and on the other hand, 
the boundary plane is nearly parallel to (~-61) instead 
of 

The calculated values for the boundary lie within 
the observed ranges (Brown, Willaime & Guillemin, 
1972). The value of (p is 69 ° for (maximum-microcline)/ 
(low albite) (no. 14--15), 79 ° for (intermediate-micro- 
cline)/(low-albite) (no. 12-13) and 90 ° for (orthoclase)/ 
(low albite)/(normal perthite). This suggests that the 
boundary migrates from (601) in normal perthites to- 
wards (6--61) as the potassium feldspar becomes more 
and more oblique; from this the formation of the 
diagonally associated perthites can be explained 
(Brown & Willaime, 1973). 

(d) Plate perthites [Group (4) perthites. See Fig. 5] 
The plate perthites have been studied in detail by 

Laves & Soldatos (1962) from the point of view of the 
mutual orientation of the two lattices after relaxation. 
These perthites consist of triclinic domains, whose 
boundary planes are mainly (011) (~0 =450; Q ~ 30 °) for 
the plates and near (~01) (~0___90°; Q~98 °) for the 
film perthite which persists (see photos in Laves & 
Soldatos). On the published photos one can see other 
boundaries whose orientations are difficult to deter- 
mine. The calculations give three minima for the 
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elastic-boundary energy; the orientations of two of 
them are in good agreement with the main observed 
boundaries. 

(e) Peristerites (see Fig. 6) 
The peristerites have been well studied and the 

prominent schiller plane is near (081) with a few near 
(lp2-],2) (Boggild, 1924; Brown, 1960). 

Nissen (in Korekawa, Nissen & Philipp, 1970) 
found a second lamellar structure in a very fine 
peristerite which made an angle of 75-80 ° in (001) with 
the first. If the one of these is (081), the second could 
well be (411) since the angle between their tlaces in 
(001) is 77-78 °. 

The first calculated minimum is close to the main 
observed orientation and agrees within 3-5 ° . The 
second calculated minimum has indices near (411) to 
(412); if the suggested identification of the second 
observed orientation is correct, there is agreement here 
too. 

( f)  Bytownites (see Fig. 6) 
In the bytownites no schiller has been reported, but 

thin lamellae are visible under the microscope in basic 
plagioclases making an angle of 17 ° with (010) and 
having indices near (061) (J/iger & Huttenlocher, 1955). 
Such lamellae have been observed under the electron 
microscope (Nissen, 1968, 1971). Two lamellar struc- 
tures have been reported near (061) and (301) by Nissen 
(1971) and near (061) and (201) by Nord, Heuer & 
Laly (1973), where the indices are expressed with c=  
7 ,It. The two calculated minima lie within 3 ° of the 
two observed orientations found by Nissen and slightly 
farther from the second direction (201) found by Nord 
et al. (1973). 

(g) Labradorites (see Fig. 7) 
The labradorites present a problem because two 

lattices cannot be distinguished by normal X-ray 
techniques, though Nissen & Bollmann (1968) ob- 
served doubled Kikuchi lines in electron diffraction 
patterns. It is clear that the more similar the input 
parameters are, the greater will be the effect of un- 
certainties on the calculated boundaries. There are 
three observed ranges of schiller directions shown in 
Fig. 7 taken from Boggild (1924). 

(a) Many in a broad range of 15 ° from near (T,12,1) 
to O,33,4); 

(b) Some between (041) and (T,2-2,7) and 
(c) a few near (301). In some specimens two direc- 

tions are visible. 

It can be seen that Boggild's groups (a) and (b) are 
within 10-35 ° of (010) and (c) close to the common 
minimum near (301). 

The calculated minima fall into two groups, those 
nearest to (010) and those nearest to (301). For cal- 
culations using parameters for natural plagioclases 
(nos. 26-27) one minimum was found close to group 

(¢) and a second less than 20 ° either from group (a) 
(no. 27) or from group (b) (no. 26). 

One input pair (no. 28) gave more aberrant results 
for which the angular differences between observed 
and calculated orientations are 35 and 45 ° . These 
lattice parameters taken from Nissen (1972) were ob- 
tained from a natural specimen using doubled Kikuchi 
lines and are probably of lower precision. 

The comparison of calculated and observed results 
is summed up in Table 4. The calculated results shown 
are selected from those in Table 3 as representative of 
the physically realistic input combinations for each 
group. The difference AO between calculated and ob- 
served orientations, and the errors estimated as 
described in § I I I .  4d are also given. It is interesting to 
note that the calculated errors are largest where the 
disagreement between the observed and calculated 
orientations are greatest. 

IV. Conclusion and comments 

On the whole, the agreement between calculated and 
observed orientations must be regarded as excellent. 
For five of the seven distinct systems used for com- 
parison, the angular differences between calculated and 
observed orientations were very small; for a sixth, 
(the braid perthites) they were moderately small. Only 
for the labradorites, which are very sensitive to uncer- 
tainties in the input parameters, could the agreement 
be regarded as doubtful. In nearly all cases where two 
or more minima were predicted, there is some experi- 
mental evidence of a second boundary in the correct 
orientation. These results are considered to be a justi- 
fication of the model and of its approximations: - use 
of unstressed room-temperature lattice parameters and 
elastic stiffnesses instead of those for the conditions 
of exsolution, and the neglect of relaxation. The use 
of high-temperature lattice parameters with room- 
temperature stiffnesses gave less good results. The high- 
quality of the results indicates that the relaxation 
energy varies as a function of orientation in the same 
way as the coherent-boundary energy. 

The calculations are of heuristic value both because 
they draw attention to areas requiring further study and 
also because they may enable a genetic theory of the 
formation of the exsolutions to be elaborated. 

The model was applied to the feldspars because they 
have several exsolution domains and because there are 
few symmetry contraints. It could be applied to other 
problems such as the pyroxenes which are much 
simpler - Morimoto & Tokonami (1969) carried out 
approximate calculations for four directions - or to 
the amphiboles for which a simplified 0-lattice model 
has been applied (Robinson, Jaffe, Ross & Klein, 
1971). 

The authors are g~ateful to M. Gandais for fruitful 
discussions and M. C. P6rucaud for help with the cal- 
culations. We thank D. B. Stewart and J. V. Smith 
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