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On the basis of proposals by Cahn [Acra Mez. (1962). 10, 179-183] for cubic crystals, a coherent elastic
model is developed which makes it possible for the orientations of exsolution boundaries formed either
by spinodal decomposition or homogeneous nucleation to be predicted. The elastic energy for the
coherent exsolution boundary is calculated for all orientations of the boundary, the minimum value
for this energy corresponding to the predicted boundary. A program has been written which can be
applied to all crystal systems; it uses as input the lattice parameters of crystals having the same com-
positions as the exsolution domains and their corresponding elastic stiffnesses. The approximations
of the model are discussed, especially the neglect of relaxation of the coherence stresses away from the
boundary, and the uncertainties in the calculated results due to errors in or lack of knowledge of the
input data. The coherent elastic model has been used to determine the orientations of exsolution
boundaries in the feldspars. The agreement between calculated and observed exsolution boundaries
is remarkable, considering that room-temperature lattice parameters and elastic stiffnesses are used.
The angular differences are less than 3° in most cases. They may reach 20° in the labradorites because
the input data are not well known. All observed exsolution boundaries have been accounted for and
some unknown ones calculated. The results of the calculations may be used to explain the cause of the

exsolution orientations and to suggest areas requiring further research.

I. Introduction

Crystals are frequently not homogeneous, and one of
the common inhomogeneities is exsolution, especially
in minerals and metals. The exsolution phenomenon
may produce domains of different or practically iden-
tical atomic structure. This paper deals with the latter
case, in which a homogeneous crystal gives rise to two
kinds of domain which differ only slightly in compo-
sition and in lattice parameters. For exsolution to take
place, it is necessary that certain atoms or groups of
atoms can diffuse through the crystal without modifying
the structure except for slight variations in the atomic
coordinates due to differences in the sizes of the atoms.

Two mechanisms are possible, homogeneous nuclea-
tion and spinodal decomposition. Right from the start
of homogeneous nucleation, the diffusion produces a
sharp change in composition at the domain boundaries
and the domains are of limited extent. At the begin-
ning of spinodal decomposition, on the other hand, the
domains differ infinitesimally in composition but
extend throughout the crystal.

In both cases, reaction proceeds in such a way as
ultimately to achieve a minimum in free energy. The
boundaries between domains will involve a certain
amount of elastic energy; if this energy varies with the
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orientation of the boundary, the total free energy will
be minimized when the boundary energy is a minimum.
Except in glasses, exsolution boundaries are nearly
planar and have a definite orientation in almost all
cases. The exsolution textures markedly affect the
physical properties of the crystal and also contain
valuable information about its past history. The object
of this paper is to propose a method for calculating
the boundary elastic energy between coherent or es-
sentially coherent domains in order to determine the
optimal orientation of the boundary. This method will
be compared with the optimal-phase-boundary model
of Bollmann (Bollmann, 1970; Bollmann & Nissen,
1968) and applied to a problem of particular interest
and complexity — the exsolution relations in the feld-
spars, a mineral group of triclinic or monoclinic sym-
metry.

I1. Coherent elastic boundary model

1. Theory of the calculation of the boundary elastic
energy

During a study of the energy involved in spinodal
decomposition of a solid, Cahn [for a review, see Cahn
(1968)] defined the elastic energy of the boundaries
between domains with a view to calculating the
coherent spinodal curve with respect to the chemical
spinodal curve. He formulated this boundary elastic
energy in the case of an isotropic solid (Cahn, 1961)
and in that of a cubic solid (Cahn, 1962). We have
adopted the simple totally coherent hypotheses of
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Cahn and have generalized them to the case of a
crystal of any symmetry.

The elastic boundary energy WE is given by WE&=
3SE T, where the SE are the elastic strain tensor com-
ponents imposed on the lattice to permit coherence
along the boundary and the T, are the corresponding
stress tensor components. To evaluate the various
components, it is necessary to define a total strain
tensor ST and a compositional strain tensor S due to
the variation in composition 4N, and to adopt several
hypotheses.

The quantity to be calculated is the boundary elastic
energy for any orientation of the planar boundary
between two exsolution domains. An orthogonal axial
system OX;, OX,, OX; is chosen such that OXj; is
perpendicular to the boundary plane, OX,; and OX,
being in this plane.

To simplify the calculations, it is supposed that the
exsolution domains are of equal volume. Thus if N(0)
is the molar fraction of one of the components before
exsolution, the corresponding values after exsolution
in domains 1 and 2 are

N(1)=N(0)+4N and N(2)=N(0)— 4N .

(a) First postulate of the model
The lattice is completely coherent along the bound-
ary plane OX,X, and there is no deformation of these
parallel planes anywhere in the crystal during the
exsolution (Cahn, 1962). ST is the total strain tensor
between the lattice before and after exsolution, and
its components parallel to the OX, X, plane are zero.
Hence:
(1a)

It is convenient to express this alternatively in Voigt’s
notation in which it becomes

ST=S]=S{=0.

S}‘1=S{2=S{2=0 .

(1)

ST
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Fig. 1. Coherent exsolution (4 — C) compared with incoherent
exsolution (4 — B). The total strain ST on passing from 4
to C can be decomposed into a compositional strain S¥
caused by a change in composition 4N (4 — B) and an
elastic strain SE required to restore coherency (B — C). The
lattice can have any given orientation compared to the
coherent boundary 00X, X,.
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Coherent exsolution according to this model is
shown in Fig. 1 by the process 4 — C where 4 is
homogeneous and of composition N(0) and C repre-
sents the two domains of composition N(1) and N(2).
ST is the total strain tensor on passing from lattice 4
to lattice 1C.

In order to carry out the calculations, it is supposed
that the passage from A4 to C is broken up into two
parts by way of B (Fig. 1), in which the two domains
have the same compositions N(1) and N(2) as in C but
are in simple contact along the plane OX, X, without
any coherence. The two domains 1B and 2B have
normal unstressed lattice parameters, the situation
corresponding on a macroscopic scale to incoherent
two-phase exsolution, but without any interaction on
the boundary.

The compositional strain tensors S and S"®
describe the passage from lattice A4 to lattice 1B and to
lattice 2B respectively. The passage from lattice 1B
to lattice 2B is described by the tensor SN — N@)]
which we will call the compositional-misfit tensor.

It is obvious that

SN = NI — _ gV | GN@) |

Since the strains produced by small differences in com-
position +4N and —A4N are equal and opposite, it

follows that
SN = _ QN @)

Then we may write

N=QN( = _ QN @) — [N(1) = N(2)

The components of SV = NI ¢an be calculated
directly from the unstressed lattice parameters of
homogeneous macroscopic crystals of compositions
N(1) and N(2).

The passage from B to C (Fig. 1) requires an elastic
deformation to obtain coherence on the plane OX,X,.
For this SE is the elastic strain tensor, SE® for domain
1 and SE® for domain 2. For small strains

E) — _ QE®) _QE
StV =_8§ SE,

The total strain tensor ST is the sum of the two parts
due to the change in composition S¥ and to the elastic
deformation SE; hence

ST=SV4SE, ©)

If T is the stress tensor related to the elastic strain,
the boundary elastic energy per unit volume is, in
Voigt’s notation

WE=1SET, (a=1to 6). 3)

(b) Second postulate of the model
There are no stresses opposing a deformation per-
pendicular to the boundary plane at any point in the

crystal (Cahn, 1962). This implies that the components
perpendicular to the boundary plane of the stress
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tensor T which produces the elastic deformation of the
crystal are zero:

T33=T;3=T5=0 (4a)
or, in Voigt’s notation
T;=T,=Ts=0. (4b)

The relation of the components of SE and T is given,
in Voigt’s notation, by

To=cSf (x,=1106) )

where c,4 are the elastic stiffness coefficients expressed
in the same axial system OX,X,X; as are the compo-
nents of S¥ and T. This relation provides six equations
which allow the calculation of the six unknown com-
ponents in the tensors SZ and T since, of the other six
components, T3, T, and Ts are zero from equation (4)
(a consequence of postulate 2), and S¥, Sf and S£ are
known from the following argument. Equation (1)
gives
ST=ST=ST=0

and if equation (2) is written in terms of its components,

ST=SN+SE,
it follows that

SE=—SY SE=—_SY and SE=—S} .

It is thus possible to calculate all the terms in equa-
tion (3) and obtain the value of the coherent elastic
energy for each successive orientation of the boundary
plane OX,X,.

The chief difficulty is that the necessary input infor-
mation is expressed in axial systems which differ from
one another and from that used in the above formal
treatment, and must be transformed to be consistent
with one another. The calculated orientation must also
be transformed to an axial system in which it can be
compared with experimental results. The method of
doing so is described in the next section.

2. Outline of the program for calculating the boundary
elastic energy

Several axial systems must be defined for the calcula-
tions:

— Axial system (1): crystallographic system corre-
sponding to crystal 1 (in general non-orthogonal).

— Axial system (2): crystallographic system corre-
sponding to crystal 2.

— Axial system (3): an average axial system, inter-
mediate between the above two; the angular and
unit vector values are obtained by taking the half
sum of the corresponding values in systems 1| and 2.

— Axial system (4): the orthogonal system 0Z,, 0Z,,
0OZ; in which the elastic stiffness coefficients are
given. For monoclinic and triclinic feldspar crystals
0Z; coincides with ¢*, 0OZ, with b, and 0Z, is
normal to the other two.
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- Axial system (5): the orthogonal system OY,, OY,,
OY; normally used for stereographic projections.
OY; coincides with ¢, OY, with b* and 07, is
normal to the other two. In this system a direction
is defined by its direction cosines m,, m, and m; or
by its polar angles ¢ and ¢ where cos g=m; and
tan p =m,/m,.

— Axial system (6): Orthogonal system OX;, OX,, OX;
defined in the previous section and related to the
orientation of the boundary plane. OX; is normal to
this plane and the axes OX, and OJX, lie anywhere
in the plane.

The deformation of the lattice due to the variation
in composition is calculated in system 4 from the
projections on system 4 of the unit cell of domains 1
and 2, expressed initially in systems 1 and 2 respectively.
This gives the misfit strain tensor in system 4. The
elastic stiffness coefficients are initially given in system
4,

For a given pair of angular coordinates, ¢, ¢, in
system 5, the corresponding orientation of a plane in
system 6 is calculated, and hence the transformation
matrix from system 4 to system 6 is derived. Using this,
the stiffness coefficients and the components of S¥ in
system 6 are obtained. The calculations of the values
of T, and SE, and hence the boundary energy WE, are
carried out in this system, using equations (1) to (5).

The values of ¢ and ¢ are varied stepwise by a loop,
to scan all orientations over a hemisphere.

The input for the program comprises

(1) a set of lattice parameters for each component

(2) the elastic stiffness coefficients ¢,

(3) specification of the steps and limits for the values
of ¢ and ¢.

Its output is the boundary elastic energy for each
specified orientation, and the description of the orien-
tation in terms of crystallographic indices in axial
system 3.

3. Limitations of the coherent elastic model

The limitations of the simple model are of two sorts,
those which are inherent in the model and those which
are due to lack of data. An inherent limitation of the
model is the fact that it does not allow for relaxation
of stresses away from the boundary. The accidental
limitations of the model are due to the fact that in
general the lattice parameters, the elastic stiffness coef-
ficients and the compositions of the domains are not
known for the conditions of formation of the exsolu-
tion. These two types of limitation will be dealt with
separately in what follows.

(@) Relaxation of stresses away from the boundary

At the very beginning of unmixing by spinodal de-
composition the diffraction spots are elongate perpen-
dicular to the boundary plane (Cadoret & Delavignette,
1969; Owen & McConnell, 1971; Owen, 1973), indicat-
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ing that there is no variation in the lattice parameters
parallel to the boundary plane, variations occurring
only in the direction normal to it. Thus at this stage
postulates (1) and (2) proposed by Cahn and adopted
by us are justified to a first approximation. The orienta-
tion of the boundary plane at the beginning of exsolu-
tion could be calculated rigourously with this model,
if the unstressed lattice parameters and stiffness coef-
ficients were known for the compositions N(0) + AN
very close to the initial composition N(0) at the tem-
perature and pressure of the unmixing.

At a more advanced stage of unmixing, the lattice
parameters are different within the domains in both the
direction of the exsolution plane as well as normal to
it. Coherence is generally maintained at the boundary
between the domains, but the stresses are relaxed as the
distance from the boundaries increases. As a result the
unit cell of the lattice varies with position and tends to
approach the unstressed state far from the boundaries.
This relaxation can be shown to be similar to that
observed near a dislocation network. When the ex-
solution lamellae are thin, the parameters inside each
lamella of the same composition are nearly constant,
because of partial relaxation of the stresses, and differ
less from the parameters on the boundary than do the
unstressed parameters (Brown & Willaime, 1973).

The schematic variation of R, a lattice parameter
parallel to the boundary, as a function of distance from
the boundary is shown in Fig. 2 by the curve ABCDE;
P, and P, represent the normal unstressed parameters
corresponding to domains 1 and 2, and 4, C or E the
parameter for the coherent model. According to the
model the stored elastic energy is that for the passage
P, to C in domain 1 and P, to C in domain 2. The
simple model is only correct near the boundary. The
stored elastic energy linked to exsolution with relaxa-
tion is that corresponding to the passage P, to R, and

o
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Fig.2. The variation of the lattice parameter (along OX,) as a
function of the distance from the boundary along OJX;.
R, and R, are the observed values of the parameter in
domains 1 and 2 (after relaxation of the coherency stresses),
C is the totally coherent parameter and P, and P, are the
stress-free parameters.
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P, to R,. If the model were applied at all points using
as initial parameters P; and P, and as final parameters
R, and R, the real parameters at each point, it would
be possible to calculate the stored elastic energy for the
real crystal under relaxation. In fact, the simple model
calculates the sum of the stored elastic energy and the
energy liberated by relaxation of the stresses. The model
should thus use undeformed paramcters and not those
measured after relaxation.

(b) Estimates of the lattice parameters and elastic stiff-
nesses for condition of exsolution

The calculation of the strains involves the differences
between the unstressed parameters, and therefore their
determination requires that the parameters themselves
must be known with high precision. This is generally
the case at room temperature but is less so at the high
temperatures and/or pressures at which exsolution
takes place. If the domains are very similar, both
elastically and in composition, it is highly probable
that the effects of temperature on both sets of param-
eters will also be similar and therefore the differences
will keep their same relative values. In addition, an
increase in hydrostatic pressure will to a first approxi-
mation reduce just those parameters which increase
most readily with temperature, and therefore the two
effects tend to oppose each other. The thermal strains
produced by an increase in temperature of 1000°C are
generally of the order of a few percent and are often
opposite to those produced by a hydrostatic pressure
rise of the order of 20-40 kilobars at room temperature,
(Clark, 1966). Since compressibility increases with in-
creasing temperature, a smaller pressure increase would
be necessary at 1000°C to counterbalance the effect of
the temperature rise.

The boundary elastic energy depends on the average
values of the elastic stiffnesses, because the boundary
energy is the half sum of the energies in unit volume on
both sides of the boundary, the strains in the two
domains being equal and opposite (when the domains
are equal in size). The value for this energy will depend
on the strains and the elastic stiffnesses. The stiffnesses
decrease with increasing temperature, the decrease
being of the order of several percent per 100°C, and the
increase in pressure needed to counterbalance this
decrease is of the order of 3-5 kilobars for materials of
average stiffness. As might be expected, the tempera-

. 1 /dc 1 /0c
ture and pressure coefficients [? (ET) and P ( E)’F)] are

greatest for the smallest stiffness coefficients, which
correspond to the materials with largest thermal ex-
pansion and compressibility coefficients.

(¢) Effect of the composition and relative amounts of the
domains

The model proposed by Cahn for spinodal decom-
position involves planar sinusoidal variations in com-
position. In order to calculate the elastic energy, it is
necessary to choose two close compositions on either
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side of the critical composition. Frequently, lattice
parameters and elastic stiffness are only known for the
extreme compositions and one must assume a linear
relation between them and composition (or use the
extreme compositions, which amounts to the same
thing).

The parameters on the boundary plane will depend
on the relative sizes of the two domains and will not be
equal to the mean values of their parameters, unless the
domains are equal in size. In fact, the differences be-
tween the parameters of the unstressed domain and
those along the boundary plane will, to a first approxi-
mation, depend inversely on the relative sizes of the
domains (Cahn, 1968; Brown & Willaime, 1973). The
values of W will be unaffected by changes in the relative
sizes of the domains if the elastic stiffnesses in the two
domains are the same, and only slightly affected if the
stiffnesses are different.

(d) Applicubility of the simple coherent elastic model

At the beginning of this section, the limitations of
the simple model were outlined; we have shown that
these limitations are not likely to be serious if we are
concerned only with relative values of the elastic
boundary energies at different orientations, and this is
all that is needed for predicting directions of their
minima.

For low-symmetry materials this can provide a
stringent test. In performing our calculations with
room-temperature lattice parameters and stiffnesses,
we are testing the validity of the approximations out-
lined in this section as well as of the model itself. A
test of this kind is the application of the model to ex-
solution systems in the feldspars, to be described in
§ I1I below.

4. Comparison with other boundary models

The O-lattice theory of Bollmann (1967, 1970) enables
calculations to be made of the orientation of grain
boundaries between crystals of the same composition
but different orientations, and also of exsolution
boundaries between lamellae of slightly different com-
positions in a composite crystal. With the introduction
of an additional hypothesis, this leads to the optimal-
phase-boundary model of Bollmann & Nissen (1968).

This latter method consists of allowing the two
slightly different lattices to interpenetrate with a com-
mon lattice point and nearly parallel orientations. On
slight rotation of the two lattices, coincidence of some
of the lattice points (or in general of equivalent points
in the unit cells) is sought, which gives rise to a mul-
tiple cell common to both lattices.

The smallest of these multiple cells is the unit cell of
the O-lattice. The composition plane of the two crystals
occurs on one of the faces of the O-lattice unit cell.
Bollmann & Nissen indicated that the boundary was
the site of a double array of dislocations. The three
potential composition planes for each possible O-lattice
are arranged in order of their surface energy, the mini-
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mum energy corresponding to the exsolution plane.
The value of the energy is not calculated, a parameter
P being used instead which is supposed to vary in a
monotonic fashion with the surface energy. This is

defined by
3 b,\? b,\ 2
r=(a) +(a)

where b, and b, are the Burgers vectors for the disloca-
tion arrays of spacings d, and d,.

The only input data needed for calculations using
Bollmann’s optimal-phase-boundary model are the un-
stressed lattice parameters corresponding to the com-
positions of the two crystals (no stiffness coefficients
are needed, the medium being considered isotropic)
and the output is the orientations of the two lattices
and of the plane of best fit.

The two models are compared schematically in Fig.
3. Both models correspond only partly to the observed
situation near the boundary. The weakness of the
coherent elastic model is not to take into account the
relaxation of the stresses away from the boundary
(Fig. 3, C to D), though this may not substantially
affect the orientation of the calculated composition
plane (see previous section.) Its major advantage is
that it allows for elastic anisotropy. If the exsolution
took place by spinodal decomposition or by homo-
geneous nucleation, the simple coherent elastic model
is justified provided the correct parameters and stiff-
nesses are used. Bollman & Nissen’s model does not
allow for coherence and should require that the ex-
solution take place by heterogeneous nucleation, the
lattice of the nucleating phase being oriented relative
to the host lattice by a dislocation network, the opti-
mum fit corresponding to a minimum in its energy (or
in the parameter P).

Bonnett & Durand (1972) proposed a different purely
geometrical method for calculating the position of the
boundary plane, following Bollmann’s O-lattice theory.

C Coherent elastic model D

N N —_—
/ Anisotropic coherent Relaxation ~Anisotropic coherent

B Incoherent
Isotl‘oplc incoherent  Anisotropy  Anisotropic incoherent

DDBD

Optimal phase boundary madel

Fig.3. Comparison of the coherent elastic model (C) and the
optimal-boundary model (E). It is probable that the real
state of the boundary is partial coherency between states
D and F.
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They calculated the pure strain on passing from one
lattice to the other, as repiesented by the quadric as-
sociated with the strain tensor. It is always possible
to reduce the problem to one of two cases:

(1) The pure strain coefficients ¢;, ¢, and ¢; parallel
to the principal axes of the quadric have the same
sign ~ the quadric is an ellipsoid and the plane of mini-
mum deformation (assumed to be the boundary plane)
is that containing the two axes with the smallest strain
coefficients, ¢, and ¢&;.

(2) Two of the principal pure strain coefficients are
positive & and &, with ¢, > &, and the third is negative —
the associated quadric is a one-sheet hyperboloid. The
planes of minimum strain (the boundary planes) con-
tain the principal axis of the quadric parallel to ¢, and
one of the directions of zero strain between ¢; and &;.
There are thus two planes of minimum strain sym-
metrically situated with regard to the plane g, ¢, (and
& &).

The parameter P defined by Bollmann & Nissen
(1968) thus becomes

P=(&")?+(e")?
where ¢'=¢, and &' =¢; in the first case and &' =0 and

&'’ =g, in the second case.
In our notation

P=(S})*+(SY)*=(SP)*+(S7)?
where the axes OX,; and OX, in the boundary plane are
oriented such that SE is zero. The elastic boundary
energy is then given by
WE=% > ¢,,SESF with a=1,2
= Ba.B4
£=1,2,3,4,5.
The terms containing S¥ and S¥ (those appearing in P)
are generally the most important. It is clear that when

the deformation needed to pass from lattice | to lattice
2 is nearly isotropic, the multiplication of the strain

or
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Fig.4. The compositions of the different exsolution types in the
feldspars.
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terms by the stiffness coefficients (generally unequal)
will produce an inequality in energy for the same strain
in different directions. The purely geometrical model
will only work well when the strain is very anisotropic.

II1. Application of the coherent elastic boundary model
to the feldspars

1. Introduction

The feldspars form the most highly studied mineral
group. They are tectosilicates of monoclinic or triclinic
symmetry. Those of interest here lie within the com-
position triangle whose corners are KAlSi;Og (K-feld-
spar), NaAlSi;O; (albite), and CaAl,Si,Og (anorthite).
They show exsolution phenomena ranging from coarse
scale to very finescale, often associated with a beautiful
iridescence in visible light. The exsolutions fall into
three broad categories: those in the alkali feldspars (K,
Na series) known as the perthites; those in the plagio-
clases (Na, Ca series) known according to composition
range as peristerites, labradorites, and bytownites; and
those in the more general composition range (Na, Ca,
K) known as antiperthites. The last named will not be
considered here, since not enough is known about
them experimentally. The composition ranges are
shown in Fig. 4.

Feldspars of given composition can differ in their
state of Si, Al order, and this can affect their lattice
parameters. In the alkali feldspars it can result in
inversions between monoclinic and triclinic symmetry,
occurring at about 600-900°C, commonly associated
with the production of twin textures. Thus, K-feldspars
may be monoclinic [sanidine and orthoclase (totally or
highly disordered)] or triclinic [intermediate microcline,
(low obliquity and moderate ordering) and maximum
microcline (high obliquity and total ordering)]. High
albite and low albite are both triclinic at room tem-
perature. The albites and microclines tend to twin in
ways which imitate monoclinic symmetry (Albite law,
Pericline law, and the superposition of both which
gives ‘cross-hatched microcline’). Such effects occur
not only in homogeneous alkali feldspars but in the
exsolution domains in the perthites; in this case the
twinning reduces the strain energy along the boundary
between a monoclinic and a triclinic domain (Willaime
& Gandais, 1972). Twinning does not occur in exsolu-
tion textures in the plagioclases, which are all triclinic.

The perthites have been given descriptive adjectives
or prefixes according to their different observed charac-
teristics. We shall ignore these until a later section, when
those relevant for our purposes will be defined.

The exact mechanism of the exsolution is not known
in all cases, but is generally considered to occur by
spinodal decomposition or homogeneous nucleation
(Owen & McConnell, 1971; McConnell, 1973; Owen,
1973; Smith, 1972). The exsolution textures are lamel-
lar and are essentially coherent. Isolated dislocations
may occur along the boundaries with a periodicity
in one case of the order of lum (Aberdam & Kern,
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1962; Aberdam, 1965), but they in no sense form a
dislocation network. Generally, two sets of lattice
parameters exist for the two domains, indicating that
relaxation has occurred away from the boundary.
When the lamellae are less than about 1 um thick the
sets of lattice parameters for the two domains are
strained (Laves, 1952; Smith, 1961; Wright & Stewart,
1968; Brown & Willaime, 1973; Viswanathan, 1968,
1973; Korekawa, Nissen & Philipp, 1970). In the case
of the labradorites only one set of spots occurs sug-
gesting that the two domains have the same lattice
parameters (Nissen, Eggmann & Laves, 1967).
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2. Input data

Accurate measurements neither of lattice parameters
of the actual exsolution domains [according to §
11.3(a) would they not be the best choice] nor of elastic
stiffnesses are generally available. It is therefore neces-
sary to match the domains against similar homogeneous
feldspars for which the measurements are available.
This requires a knowledge of the character of the
domains, their composition, state of order, and twin-
ning. The problems concerning these are of a different
nature for the perthites and the plagioclase exsolu-
tions.

Table 1. Lattice parameters used in the calculations

Bulk
composition Parameters
Mineral name Or Ab An  a(A) b (A) c(A) o (%) Q) () Reference
1 Synthetic sanidine 100 0 O 8-603 13-021 7-178 90 116-01 90 [9]
2 Synthetic sanidine 59 31 0 8-425 12-999 7-167 90 116-09 90 9]
2 Synthetic sanidine 39 61 0 8:320 12:977 7-159 90 116-20 90 9]
4 Synthetic high albite 0100 O 8-151 12:-862 7-115 93-65 116:45 89-98 [9]
5 Synthetic sanidine 8:353 12983 7-162 90 116:17 90 Footnote 1
6 Synthetic sanidine 8-300 12:957 7-152 90 116:30 90 Footnote 1
7 Orthoclase 91 7 2 8-562 12-996 7-193 90 116-01 90 Spencer C
[4, 11]
8 Intermediate microcline 86 13 1 8-578 12-960 7-211 90-30 115-97 89-13 Spencer U
(1, 11]
9 Maximum microcline 100 0 O 8-589 12:963 7:223 90-62 115-95 87-73 Hugo KCI] [9]
9M Maximum microcline 8-585 12-958 7-223 90 11595 90 Footnote 2,
Hugo KCI[9]
10 Strained microcline 83 17 0 8-615 12-916 7-193 90-70 116-38 87-53 L29 [3]
11 Strained low albite 0100 O 8-120 12-802 7-177 93-95 116-75 87-92 L29 [3]
12 Synthetic intermediate albite 0 100 0 8-160 12:810 7-152 93-95 116-48 88-60 219 [6]
13 Low albite 2 98 0 8135 7-788 7-154 94-23 116:52 8772 Spencer T
[5, 11]
13A Low albite 8-135 12753 7-154 90 11652 90 Footnote 2,
[5, 11]
13P Low albite 8-129 12:788 7-135 90 116-52 90 Footnote 2,
[5, 11]
14 Low albite 1 98 1 8-141 12:785 7-159 94-26 11659 87-68 191 [2]
15 Oligoclase 1 74 25 8-159 12:843 7-127 93-80 116-41 89-28 170 [2]
16 Low albite 2 98 0 8-208 12-839 7:173 93-86 116-25 87-52 F 101, 600°C
[6]
17 Oligoclase 3 75 22 8-199 12-849 7-129 93-43 116-20 88-80 F 36, 600°C
(7]
18 Andesine 4 59 37 8171 12-862 7-119 93-59 11630 89-68 512)
19 Andesine 0 60 40 8170 12:873 7-105 93-38 116-23 90-35 AnjAns, [10]
20 Labradorite 1 45 54 8-169 12-862 7-108 93-58 11622 89-81 81 [2]
21 Labradorite 1 41 58 8:180 12:870 7-109 93-52 116-20 90-04 96 [2]
22 Labradorite 8-177 12-862 7-108 93-60 116-29 89-74 sodic [8]
23 Labradorite 8:169 12-851 7-112 93-56 116-17 89-84 calcic [8]
24 Labradorite 0 31 69 8:175 12-865 7-102 93-50 11614 90-31 45 [2]
25 Anorthite 0 7 93 8179 12-873 7-090 93-21 115-97 91-11 116 [2]
Footnote 3

Precision +0-002 A and +0-02° except for 10, 11, 16, 17: +0:006-8 A and 0-05-8°.
Footnotes: (1) These parameters were invented taking into account thermal expansion data for albites (ref. [6]) and potassium
feldspars (ref. [7]) and the effect of the substitution of K+ for Na™* in the feldspar framework.

(2) A for Albite twin with b =dp,

P for Pericline twin with a’=a sin y, ¢'=c sin «, §'=180—g*
M for Albite and Pericline twins (M type), average of A and P.
(3) For convenience the ¢ axis for anorthite was taken as 7 A.
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Table 2. Elastic stiffness coefficients, for axial system 4 (10'* dyne cm~2 or 10!° Pascal)

(Orientation z; 1 z, and z;, z, || b, z3 || ¢*)

Composition

Css Co6 Ci2 Ci3 Ca3 Cis C2s C3s Cas

Caa

Cry

Ref.

Ab An

Or

Feldspar
Orthoclase

66
64-9

Microcline

Albite
Oligoclase
Labradorite
Isotropic

A
B
C
D
E
F
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0-7 mbar and Poisson’s

e amounts of Ab and must be perthitic. They are thus already compositional averages. 4 indicates the

‘triclinicity’ of the potassium feldspar.

[2] Ryzhova (1964).
[31 The stiffnesses were calculated from those of an average glass (from Birch, Table 7-21 in Clark, 1966) where Young’s modulus E

References [1] Ryzhova et al. (1965) — 4 and B contain considerabl

=0-2.

ratio
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For the perthites, it is sufficiently good to assume
domain compositions of pure K- and pure Na-feldspar:
evidence for this will be given below, in § IIL.5 (actual
compositions of exsolution pairs range from Ory/Or;qq
to Or,,/Or;5). The more important differences concern
symmetry and twinning. For trial purposes, we may
divide perthites into four groups, depending on the
symmetry of the domains (counting finely twinned
triclinic domains as averaging to monoclinic). Writing
the K-rich component first, they are as follows:

Group (1): Monoclinic/monoclinic
Group (2): Monoclinic/triclinic
Group (3): Triclinic/monoclinic
Group (4): Triclinic/triclinic.

The correlation of these groups with observed
materials will be left to §§I11.4 and I11.5. For the twinned
materials, lattice parameters are constructed from the
corresponding single-crystal lattice parameters as fol-
lows:

Albite law: a, d,,,, ¢, 90°, B, 90°

Pericline law: a sin y, b, ¢ sin a, 90°, 180-8*, 90°
Cross-hatched microline: average of the above
two.

In the plagioclases, our state of knowledge is dif-
ferent for the three groups. For the peristerites, the
composition pair is Ab;goAny/Ab;sAn,s (Laves, 1954;
Brown, 1960; Fleet & Ribbe, 1965; Ribbe, 1960) and
the feldspar is highly ordered. For the byrownites
(Huttenlocher intergrowth*) the compositional separa-
tion is less well known but may be considered to be
Ab;3Ang,/Ab g _oAngy_190 (Nissen, 1968, 1972). For
the labradorites (Boggild intergrowth*) the situation
is much less clear because of lack of data on the com-
position and state of order of the domains and the
unknown role of potassium (Nissen, Eggmann &
Laves, 1967; Nissen, 1971). In other words, in this
series differences between the domains due to state of
order may perhaps be as important as those due to
composition. Moreover, it is known (Nissen, 1969)
that in the bulk composition range Ang—Ang, the lat-
tice parameters vary erratically with composition,
though in other parts of the plagioclase system they
vary more smoothly. All that can be done in these
circumstances is to try various combinations of sets of
lattice parameters measured on materials in the right
composition range.

Although the lattice parameters for very many
homogeneous feldspars at room temperature have
been measured, few high-temperature results are avail-
able. In general, room-temperature parameters for
alkali feldspars and plagioclases have been used as no
high-temperature measurements exist for the stiffness
coefficients; two calculations using high-temperature
parameters (directly measured or estimated from

* Term suggested by Smith (1972)
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thermal expansions) have however been included for
comparison.

The lattice parameters used in the calculations are
given in Table 1. (The serial numbers in the Table do
not refer to particular specimens, but are used in cross-
reference to Table 3).

Stiffness coefficients for a series of seven alkali
feldspars and five plagioclases have been measured at
room temperature (Ryzhova, 1964; Ryzhova &
Alexandrov, 1965; Ryzhova, Alexandrov & Belikov,
1969) and those used are reproduced in Table 2. Thir-

THE DETERMINATION OF THE ORIENTATION OF EXSOLUTION BOUNDARIES

teen stiffness coefficients were measured for each of
the two monoclinic feldspars and for each of the ten
twinned triclinic ones treated as monoclinic: since the
triclinic feldspars are very nearly monoclinic, the errors
introduced by this simplification are probably not very
great compared with the errors in the coefficients them-
selves; these are of the order of 3-10% depending on
the coefficient (Alexandrov & Ryzhova, 1962; Ryzhova
1964; Simmons, 1964). The differences between coef-
ficients for the plagioclases seem to vary systematically
with composition, those rich in An being stiffer. It

Table 3. Results of the calculations

Lattice
Nature of parameters
Exsolution No. domainst usedi
Perthites group 1 1 Sa/H-Ab(P)* 1 4p*
(normal perthites) 2 Sa/H-Ab(A)* 1 4A*
3  Or/L-Ab(P) 7 13p
4 Or/L-Ab(A) 7 13A
5 Or/L-Ab(A) 7 13A
6 Or/L-Ab(A) 7 13A
7 Sa/Sa 2 3
8 Sa/Sa(HT)* 5 6
Perthites group 2 9 Or/L-Ab 7 13
(Braid perthites)
10  I-Mi(M)*/L-Ab 8M*13
11 M-Mi(M)/L-Ab 9M 13
Perthites group 3 12 I-Mi/L-Ab(A) 8 12A
(Diagonal association) 13  I-Mi/L-Ab(A) 8 12A
14 M-Mi/L-Ab(A) 9 12A
15 M-Mi/L-Ab(A) 9 12A
16 M-Mi/L-Ab(A) 10 11A
Perthites group 4 17  M-Mi/L-Ab 9 14
(Plate-perthite)
18 M-Mi/L-Ab 9 14
19 M-Mi/L-Ab 9 14
Peristerites 20 L-Ab/L-0Ol 14 15
21 L-Ab/L-Ol 14 15
22 L-Ab/L-Ol 14 15
23  L-Ab/L-OI(HT)* 16 17
Bytownites 24 L-Ab/An 24 25
25 L-Ab/An 24 25
Labradorite 26 And/Lab 18 21
27 And/Lab 19 20
28 Lab/Lab 22 23

Cap

W AR AR ©E > > TO > > >

T Q

a m g 0

m @ m T o

Calculated minimum Wein W Prax
(0 4] i k 1 IO‘J m_3 Wmln min
9% 985 79 0 1 360 67 146
9 995 68 0 1 420 60 128
9 100 64 0 1 480 52 11
9 995 68 0 1 600 46 93
% 1015 57 0 1 620 56 93
9 975 84 0 1 380 96 93
% 99 71 0 1 54 20 54
9 925 25 0 1 89 44 10
124 107 T 09 03 920 51 29
123 137 1 06 08 910 51
1195 1045 1T 12 03 107 47 29
1165 1065 T 08 03 113 46 29
79 98 78 25 1 350 67 153
78 100 63 22 1 370 82 153
69 97 85 56 1 170 22 32
68 98 74 5 1 210 18 32
70 995 64 39 1 14 260 300
54 38 02 1 13 1420 2:6 34
88 9 104 11 1 1360 28
24 74 002 1 002 1470 2:6
77 88 28 12 1 1560 31 34
521005 08 1 02 1530 41 34
8 665 18 03 1 1530 41
169 74 02 8 13 149 24 32
103 119 i 11 17 149 24
169 74 02 8 13 152 25 32
102 118 i 1 17 152 25
172 81 03 8 07 12 28 32
100 111 3 09 13 12 28
175 68 05 8 18 37 59 71
96 130 2 02 23 37 59
92 1145 3 02 11 031 310 408
171 75 01 & 09 031 310
91 113 302 10 022 340 408
171 76 01 6 08 022 340
97 1175 3 05 12 10 26 25
160 68 03 3 09 10 26
97 1165 3 06 12 036 113 170
179 875 0 12 02 036 113
635 80 3 3 06 002 380 220
178 30 117 3 35 002 380

* P for Peiricline twinned, A for Albite twinned, M for M-type twinned, HT for high-temperature.
t Abbreviations used H (High); L (Low); I (Intermediate); M (Maximum); Sa (Sanidine); Ab (Albite); Or (Orthoclase);
Mi (Microcline); Ol (Oligoclase); And (Andesine); An (Anorthite); Lab (Labradorite),

} Cross references to Tables 1 and 2.
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Normal perthite

Diagonal  (group 3) (group 1)
association Brajd perthite
(group 2)
5.
o [
|
E
T+
rrg 1 (ar0)
i/

A

Plate perthite
(group 4)

Fig.5. Stereographic projection of the positions of the cal-
culated energy minima compared with the observed exsolu-
tion boundaries for perthites (groups 1-4) — see Table 3.
Symbols: — Physically reasonable input data, in good agree-
ment @, in poor agreement + with observations. Phys-
ically unreasonable input data ill.

Bytownite Peristerite - P
/'/
0
20.21 [oay] (d10}
224 pp M2
25
Peristerite
Bytownite

Fig.6. Stereographic projection of the positions of the cal-
culated energy minima compared with the observed exsolu-
tion boundaries for peristerites and bytownites. Same sym-
bols as Fig. 5.
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is not clear whether the differences within the K-rich
feldspars are significant or not. In any case the feld-
spars are all so similar elastically that we felt justified
in our calculations in using only one set of elastic
coefficients for both compositional domains. No high-
temperature measurements exist for the feldspars.

Tt is of interest to find the effect of elastic anisotropy.
This can best be done by making comparison calcula-
tions with comparable isotropic stiffnesses. Table 2
therefore includes stiffness coefficients for a glass of
composition similar to a feldspar.

3. Results

Table 3 gives the results of the calculations. The
numbets in the second column are serial numbers used
for reference in the text. Column 3 gives the character
assumed for the domains. The corresponding choice
of lattice parameters and stiffness coefficients is
indicated in columns 4 and 5 by numbers and letters
referring respectively to Tables 1 and 2.

For the perthites, all reasonable combinations of
twins laws and symmetries were tried, each with
reasonable choices of elastic stiffnesses. In addition,
there were tests with isotropic elastic stiffnesses (6 and
19), strained parameters (16), less extreme composi-
tions (7), and hypothetical high-temperature param-
eters (8). For the peristerites and bytownites, one
choice of room-temperature lattice parameters was
used for each, combined with different reasonable
stiffnesses; in addition, there were trials using high-
temperature parameters (23) and isotropic stiffnesses
(22 and 25). For the labradorites, many calculations
using reasonable compositional pairs were carried out,
two representative examples are given (26 and 27). A
third example (28) uses a combination of spacings
deduced indirectly on the exsolution material, prob-
ably with lower accuracy (see § IIL.5). Calculations
were carried out for values of ¢ and ¢ scanning over
half of space in 10° steps, and in 1° steps in the neigh-
bourhood of the minima.

The positions of these minima are given in terms of
¢ and g, and also of the crystallographic indices (hk/)
in column 6. They are plotted on stereograms in Figs.
5-7. The values of the minimum boundary strain
energy Wai, are given in column 7 and the ratios
W ax/ Wenin in column 8. The ratio of the pure strains
Poai/Pmin ON passing from one lattice to the other are
given for comparison in column 9. They were calcu-
lated using a program written to determine the orienta-
tions of the thermal-expansion ellipsoid (Willaime,
Brown & Perucaud, 1974).

We may call attention here to the occurrence of more
than one minimum in certain perthites (examples 9,17-
19) and in all the plagioclase exsolutions.

4. Discussion of the calculated results

This section deals with the results as related to the
model and compares them with those of the model of
Bollmann (Bollmann & Nissen, 1968; Nissen, 1972).
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Mineralogical discussion, leading up to a comparison
of calculated and observed results, will be given in
§ IIL.5.

It can be seen from the clustering of calculated
orientations in Fig. 5 (Table 3, examples 1-19) that
the empirical classification of the perthites into four
groups has been justified. This allows us to treat the
groups as entities in the following discussion. We shall
show below that they are to be identified with observed
series as follows:

Group (1), normal perthites, represented by moon-
stones

Group (2), braid perthites

Group (3), diagonal association

Group (4), plate perthites,
and we shall use these names where ap-
propriate hereafter.

(@) Role of stiffness anisotropy and misfit anisotropy

The value of the minimum boundary energy, W,
is sensitive to the difference in the parameters of the
two domains and hence to the approximations of the
model - assumption of complete coherence, no relaxa-
tion of the stresses away from the boundaries and use of
the lattice parameters for the end compositions. Ii
decreases as closer compositions are used. Comparisons
between different exsolutions must therefore be made
with caution.

On the other hand, the ratio W,,,,/ Wy, is nearly the
same for extreme parameters and intermediate param-
eters. This ratio can thus be compared for the different
calculations. It gives a measure of the variation of the
boundary elastic energy with boundary orientation.
The ratio P, ,./P..;, gives a measure of the misfit ani-
sotropy (see § I1.4). The anisotropy of the elastic stiff-
ness coefficients is of the order of 2-5 in the feldspars —
the ratio ¢,,/c;; ranges from about 2 to 3. It can be
seen that in some cases the stiffness anisotropy is
negligible compared to the misfit anisotropy; in others,
they are of the same order of magnitude.

When P,,,/P...>10 (bytownites, peristerites, nor-
mal perthites, diagonal association) the stiffness anisot-
ropy is negligible compared with the misfit anisotropy,
hence the influence of the elastic stiffnesses on the
orientation of the plane of minimum energy is small.
The use of isotropic elastic stiffnesses (Table 2, F) in
the calculations only changes the orientation by 1° for
the bytownites (Table 3, no. 25) and by about 10° for
the peristerites (no. 22). 4 fortiori the use of the elastic
stiffnesses for a feldspar of composition different from
that of the bulk composition has even less effect on the
orientation of the boundary plane. For the peristerites,
the orientation varied less than 1° on using the stiff-
nesses for albite (C) or those for oligoclase (D) (Table
3, no. 20 and 21). Thus, the use of the elastic stiffnesses
for labradorite (Table 2, E), those for bytownite not
having been measured, will not significantly affect the
results for the bytownites,

THE DETERMINATION OF THE ORIENTATION OF EXSOLUTION BOUNDARIES

The large misfit anisotropy in these cases justifies
the use of the optimal-phase-boundary theory for the
calculation of the orientation of the exsolution
boundary. The results of Nissen (1972) for these ex-
solutions are in good agreement with our results (Wil-
laime & Brown, 1972 and Table 3). For comparison,
we have done a calculation (Table 3, no. 16) with the
lattice parameters used by Nissen in the case of the
diagonal association, which were those measured on a
specimen after partial relaxation (Brown, Willaime &
Guillemin, 1972); it gave P, ../ Pumia=300.

For braid and plate perthites, on the contrary, the
deformation is quasi-isotropic; the ratio P ,./Pmin 15
2:9 and 3-4 and is of the same magnitude as the stiff-
ness anisotropy. The orientation of the calculated
boundary plane is very sensitive to vaiiations in the

ZUIN
ST

JOGUT
G

S
N

Fig.7. Stereographic projection of the positions of the cal-
culated energy minima compared with the observed exsolu-
tion boundaries for labradorites. Same symbols as Fig. 5.

Fig.8. Stereographic projection of the contours of equal
boundary elastic energy for plate perthite: (a) elastic stiff-
nesses for microcline (Table 3, no. 17); (b) elastic stiffnesses
for albite (Table 3, no. 18). The zones of low energy are very
spread out and are almost the same for both. The minima
are not in the same places,
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elastic stiffnesses. In the case of the plate perthites the
stiffnesses for microcline (Table 2, B) gave three direc-
tions of minimum energy [Fig. 8(a), Table 3, no. 17].
On using the elastic stiffnesses of albite (C) only one
of these minima remained (Table 3, no. 18) but rotated
by 15° compared with the positions obtained with B;
in the directions corresponding to the other two mini-
ma, the boundary elastic energy remained low, but was
not a minimum [Fig. 8(b)]. Using isotropic elastic
stiffnesses, two minima were obtained which bear no
relation to the observed boundaries in the plate
perthites (Table 3, no. 19). Because of the quasi-isotropy
of the strain, the optimal-phase-boundary model can-
not give results in accordance with observations. In
fact, Nissen (1972) found no minima corresponding to
plate perthites for the relative orientation given by
Laves & Soldatos (1962).

For a perthite with domains of orthoclase and un-
twinned low albite (Table 3, no. 19) the calculated
orientations corresponding to the energy minima were
compared with the results of Bollmann & Nissen (1968)
using the same lattice parameters: they are completely
different, because the stiffness anisotropy is as im-
portant as the misfit anisotropy.

(b) The effect of relaxation of stresses away from the
boundary

In the discussion of the coherent elastic model
(§ II. 3a) it was shown that unstressed lattice param-
eters should be used for the calculation. The results ob-
tained using parameters deformed through coherence
stresses are a complicated function of the elastic energy
and the relaxation energy. To examine the effect
empirically, a calculation (no. 16) was carried out
using parameters measured on a crystal with partial
relaxation of the coherency stresses neglecting the zone

+[007]

N2/

Fig.9. Stereographic projection of the contours of equal
boundary elastic energy for bytownite (Table 3, no. 24). Two
minima of very nearly equal energy are clearly visible. The
labradorites and peristerites also show two minima,
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of rapid change near the boundary, and the result was
compared with calculations (nos. 12~-15) using different
unstressed parameters. It can be seen from Fig. 5 that
the orientations are very close to one other; the dif-
ference between nos. 16 and 14, with similar stiffnesses,
is about 4°.

One can conclude that the energy corresponding to
the relaxation of stresses and the coherent-boundary
elastic energy vary in the same way with the orientation
of the boundary. This justifies a posteriori the simple
model which neglects relaxation.

(c) Use of high-temperature lattice parameters

Calculations have been carried out using parameters
at 600°C, a temperature near the supposed exsolution
conditions. For the perthites (Table 3, no. 8 — invented
parameters) the calculated minimum is displaced by
about 8°. For the peristerites (no. 23) the deviation is
about 10-15°. As the value of P,,,/P,,;, falls from 54 to
10 in the first-named example, and from 32 to 7:1 in
the second, it is necessary to use the correct high-
temperature elastic stiffnesses. In these two cases, the
use of room-temperature lattice parameters and stiff-
nesses gives better results.

(d) Errors in the input parameters

Errors in the input data (compositions used, lattice
parameters and elastic stiffnesses) will lead to uncer-
tainty in the calculated exsolution boundary. The effect
of errors in lattice parameters was examined by calcula-
tions in which the parameters were varied one at a time
by the magnitude of the experimental error. There will
be the greatest effect on the orientation when the par-
ameter differences are small and the misfit anisotropy is
small. All cases were examined and the calculated differ-
ences of orientation are given in Table 4.

(e) The values of the energy minima

In the cases of the peristerites, the labradorites and
the bytownites as we noted in § III. 3, our calculations
gave two directions for the optimal boundary. In all
these calculations the values of W,,;, are equal within
1%, for orientations calculated with an error of 0-5°,
Fig. 9 shows a stereographic projection of the contours
of equal boundary elastic enetgy in a case with two
minima (bytownite).

The theory offers no explanation, at this stage of
approximation, as to why one minimum rather the
other should be chosen in any given case.

These double minima correspond to the case, where
the quadric associated with the pure-strain tensor is a
hyperboloid* (see § I1.4) and the parameter P is a

* In the three cases considered this result could be pre-
dicted without any calculation, since a and b vary in the op-
posite way to ¢. But the fact that all three parameters may
vary in the same way is no proof of the existence of a single
maximum; angular variations may be very important and a
direction may exist (other than a, b or ¢) for which the sign
of a variation is opposite to that of a, b and ¢,
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minimum for two different orientations with a value of
P=(S%?. The boundary elastic energy is a minimum
for orientations close to those where P is a minimum,

WE~4[c5(S5)? + ¢23S5SE + ¢,485SE + €2555S5] .

In this expression the term c¢,,(S¥)? is the most impor-
tant and has the same value for the two orientations for
which P is a minimum. For the two directions of
minimum boundary energy, the elastic anisotropy
makes all the terms very slightly different. This ex-
plains why the values of W, are almost equal.

When the elastic anisotropy is not negligible com-
pared to the strain anisotropy (braid perthites, plate
perthites), the multiple minima W, differ by up to
6%. In such cases, the elastic anisotropy plays a role
in determining the number of minima (1 to 3 instead of
2), their orientations and their values.

5. Comparison of the observed and calculated exsolution
boundaries

It is necessary to review the experimental evidence for
each group of exsolutions separately before the cal-
culated orientations can be compared with the ob-
served. It should be stressed at this point that only the
normal perthites are considered by us to be a product
of primary exsolution, the other types being con-
sidered to have formed from normal perthites by re-
arrangement (Brown, Willaime & Guillemin, 1972 and
unpublished results).

(a) Normal perthites [Group (1) perthites. See Fig. 5]

These are well known from the work of Boggild
(1924) on a series with fine-scale lamellations — the
moonstones. It is generally accepted that the K-rich
domains and the Na-rich domains are monoclinic or
finely-twinned triclinic. The measured range of ¢ values
(known with good precision) is 98-5-101-8°. The cal-
culated range, 97-5-102° for physically reasonable in-
put, agrees excellently with the observed. The cal-
culated values show no significance associated with
the character of the domains or the twinning; a pair
comprising two sanidines of inteimediate composition
gives essentially the same value of ¢ as pairs comprising
pure sanidine or orthoclase with high or low albite
twinned according to the Albite or the Pericline
law.

(b) Braid perthites {Group (3) perthites. See Fig. 3]

These are less well known than the previous group.
They have been studied chiefly by Goldich & Kinser
(1939) and Ramberg (1972) using mainly optical
microscopy. Our electron-optical results are extremely
complex and are not discussed here.

In coarse braid perthites, albite occurs in large zigzag
lamellae in a cross-hatched microcline matrix. The
albite is coarsely twinned according to the Albite law,
each twin composition plane occurring where the
lamella changes direction (Goldich & Kinser, 1939, p.
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411, Plates 14 and I14). The boundary plane is nearly
parallel to (110) (p~60°, ¢=90°) (measured from
Goldich & Kinser, 1939) or, to (861) (p~117°, ¢~95°)
in braid microperthite (Ramberg, 1972). Contrary to
the observations of Ramberg (1972) we found that
braid microperthite from the same localities is not in
diagonal association (unpublished work).

A calculation (Table 3, no. 9) using the parameters
of orthoclase and twinned low albite gave two minima,
one near the observed orientation (~ 10°), the other
farther (~40°). Two further calculations (nos. 10-11)
using the average monoclinic parameters for Albite-
and Pericline-twinned intermediate and maximum
microcline gave one minimum near the observed
orientation (~ 10-15°).

(c) Diagonally associated perthites [Group (3) perthites.
See Fig. 5]

Smith & MacKenzie (1959) studied a cryptoperthite
whose X-ray diffraction patterns presented a double
spot for triclinic K-rich domains, very slightly rotated
from the albite twin position, and Albite-twinned
albite spots; they called this the diagonal association.
An electron-optic study (Brown, Willaime & Guille-
min, 1972) showed that the K-rich domains occur in
large zigzags, each orientation of the zigzag corre-
sponding to one of the rotated twins. The bound-
ary-plane orientation between these K-rich domains
and the finely Albite-twinned triclinic Na-rich
domains varies from (661) to (631) (p~60-75° and
@2 100°).

This kind of peithite differs from normal perthites
because, on the one hand, the K-rich domains are
triclinic instead of monoclinic, and on the other hand,
the boundary plane is nearly parallel to (661) instead
of (601).

The calculated values for the boundary lie within
the observed ranges (Brown, Willaime & Guillemin,
1972). The value of ¢ is 69° for (maximum-microcline)/
(low albite) (no. 14-15), 79° for (intermediate-micro-
cline)/(low-albite) (no. 12-13) and 90° for (orthoclase)/
(low albite)/(normal perthite). This suggests that the
boundary migrates from (601) in normal perthites to-
wards (661) as the potassium feldspar becomes more
and more oblique; from this the formation of the
diagonally associated perthites can be explained
(Brown & Willaime, 1973).

(d) Plate perthites [Group (4) perthites. See Fig. 5]
The plate perthites have been studied in detail by
Laves & Soldatos (1962) from the point of view of the
mutual orientation of the two lattices after relaxation.
These perthites consist of triclinic domains, whose
boundary planes are mainly (011) (p=~45°; ¢~30°) for
the plates and near (601) (p~90°; ¢~98°) for the
film perthite which persists (see photos in Laves &
Soldatos). On the published photos one can see other
boundaries whose orientations are difficult to deter-
mine, The calculations give three minima for the
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elastic-boundary energy; the orientations of two of
them are in good agreement with the main observed
boundaries.

(e) Peristerites (see Fig. 6)

The peristerites have been well studied and the
prominent schiller plane is near (081) with a few near
(1,21,2) (Boggild, 1924; Brown, 1960).

Nissen (in Korekawa, Nissen & Philipp, 1970)
found a second lamellar structure in a very fine
peristerite which made an angle of 75-80° in (001) with
the first. If the one of these is (081), the second could
well be (411) since the angle between their traces in
(001) is 77-78°.

The first calculated minimum is close to the main
observed orientation and agrees within 3-5°. The
second calculated minimum has indices near (411) to
(412); if the suggested identification of the second
observed orientation is correct, there is agreement here
too.

(f) Bytownites (see Fig. 6)

In the bytownites no schiller has been reported, but
thin lamellae are visible under the microscope in basic
plagioclases making an angle of 17° with (010) and
having indices near (061) (Jiger & Huttenlocher, 1955).
Such lamellae have been observed under the electron
microscope (Nissen, 1968, 1971). Two lamellar struc-
tures have been reported near (061) and (301) by Nissen
(1971) and near (061) and (201) by Nord, Heuer &
Laly (1973), where the indices are expressed with ¢=
7 A. The two calculated minima lie within 3° of the
two observed orientations found by Nissen and slightly
farther from the second direction (201) found by Nord
et al. (1973).

(g) Labradorites (see Fig. T)

The labradorites present a problem because two
lattices cannot be distinguished by normal X-ray
techniques, though Nissen & Bollmann (1968) ob-
served doubled Kikuchi lines in electron diffraction
patterns. It is clear that the more similar the input
parameters are, the greater will be the effect of un-
certainties on the calculated boundaries. There are
three observed ranges of schiller directions shown in
Fig. 7 taken from Beggild (1924).

(@) Many in a broad range of 15° from near (1,12,1)
to (9,33,4);

(b) Some between (041) and (1,22,7) and

(c) a few near (301). In some specimens two direc-
tions are visible.

It can be seen that Beggild’s groups (@) and (b) are
within 10-35° of (010) and (c¢) close to the common
minimum near (301).

The calculated minima fall into two groups, those
nearest to (010) and those nearest to (301). For cal-
culations using parameters for natural plagioclases
(nos. 26-27) one minimum was found close to group
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(c) and a second less than 20° either from group (a)
(no. 27) or from group (b) (no. 26).

One input pair (no. 28) gave more aberrant results
for which the angular differences between observed
and calculated orientations are 35 and 45°. These
lattice parameters taken from Nissen (1972) were ob-
tained from a natural specimen using doubled Kikuchi
lines and are probably of lower precision.

The comparison of calculated and observed results
is summed up in Table 4. The calculated results shown
are selected from those in Table 3 as representative of
the physically realistic input combinations for each
group. The difference 46 between calculated and ob-
served orientations, and the errors estimated as
described in § II1.4d are also given. It is interesting to
note that the calculated errors are largest where the
disagreement between the observed and calculated
orientations are greatest.

IV. Conclusion and comments

On the whole, the agreement between calculated and
observed orientations must be regarded as excellent.
For five of the seven distinct systems used for com-
parison, the angular differences between calculated and
observed orientations were very small; for a sixth,
(the braid perthites) they were moderately small. Only
for the labradorites, which are very sensitive to uncer-
tainties in the input parameters, could the agreement
be regarded as doubtful. In nearly all cases where two
or more minima were predicted, there is some experi-
mental evidence of a second boundary in the correct
orientation. These results are considered to be a justi-
fication of the model and of its approximations: — use
of unstressed room-temperature lattice parameters and
elastic stiffnesses instead of those for the conditions
of exsolution, and the neglect of relaxation. The use
of high-temperature lattice parameters with room-
temperature stiffnesses gave less good results. The high-
quality of the results indicates that the relaxation
energy varies as a function of orientation in the same
way as the coherent-boundary energy.

The calculations are of heuristic value both because
they draw attention to areas requiring further study and
also because they may enable a genetic theory of the
formation of the exsolutions to be elaborated.

The model was applied to the feldspars because they
have several exsolution domains and because there are
few symmetry contraints. It could be applied to other
problems such as the pyroxenes which are much
simpler — Morimoto & Tokonami (1969) carried out
approximate calculations for four directions — or to
the amphiboles for which a simplified 0-lattice model
has been applied (Robinson, Jaffe, Ross & Klein,
1971).

The authors are grateful to M. Gandais for fruitful
discussions and M. C. Pérucaud for help with the cal-
culations, We thank D, B, Stewart and J. V. Smith
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